Skip to main content
Log in

Cannabinoid receptors and their role in neuroprotection

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Two G protein-coupled receptors for marijuana’s psychoactive component, Δ9-tetrahydrocannabinol, have been cloned to date, the cannabinoid CB1 and CB2 receptors. These two proteins, the endogenous lipids that activate them, also known as endocannabinoids, and the proteins for the biosynthesis and inactivation of these ligands constitute the endocannabinoid system. Evidence has accumulated over the last few years suggesting that endocannabinoid-based drugs may potentially be useful to reduce the effects of neurodegeneration. In fact, exogenous and endogenous cannabinoids were shown to exert neuroprotection in a variety of in vitro and in vivo models of neuronal injury via different mechanisms, such as prevention of excitotoxicity by cannabinoid CB1-mediated inhibition of glutamatergic transmission, reduction of calcium influx, anti-oxidant activity, activation of the phosphatidylinositol 3-kinase/protein kinase B pathway, induction of phosphorylation of extracellular regulated kinases and the expression of transcription factors and neurotrophins, lowering of cerebrovasoconstriction and induction of hypothermia. The release of endocannabinoids during neuronal injury may constitute a protective response. If this neuroprotective function of cannabinoid receptor activation can be transferred to the clinic, it might represent an interesting target to develop neuroprotective agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abood M. E., Rizvi G., Sallapudi N., and McAllister S. D. (2001) Activation of the CB(1) cannabinoid receptor protects cultured mouse spinal neurons against excitotoxicity. Neurosci. Lett. 309, 197–201.

    Article  PubMed  CAS  Google Scholar 

  • Andersson M., Jacobsson S. O., Jonsson K. O., Tiger G., and Fowler C. J. (2000) Neurotoxicity of glutamate in chick telencephalon neurons: reduction of toxicity by preincubation with carbachol, but not by the endogenous fatty acid amides anandamide and palmitoylethanolamide. Arch. Toxicol. 74, 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Bayewitch M., Rhee M. H., Avidor-Reiss T., Breuer A., Mechoulam R., and Vogel Z. (1996) (-)-Delta9-tetrahydrocannabinol antagonizes the peripheral cannabinoid receptor-mediated inhibition of adenylyl cyclase. J. Biol. Chem. 271, 9902–9905.

    Article  PubMed  CAS  Google Scholar 

  • Benito C., Nunez E., Tolon R. M., et al. (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J. Neurosci. 23, 11,136–11,141.

    CAS  Google Scholar 

  • Berdyshev E. V., Schmid P. C., Krebsbach R. J., et al. (2001) Cannabinoid-receptor-independent cell signalling by N-acylethanolamines. Biochem. J. 360, 67–75.

    Article  PubMed  CAS  Google Scholar 

  • Berger C., Schmid P., Schabitz W., Wolf M., Schwab S., and Schmid H. (2004) Massive accumlation of N-acylethanolamines after stroke. Cell signalling in acute cerebral ischemia? J. Neurochem. 88, 1159–1167.

    Article  PubMed  CAS  Google Scholar 

  • Bisogno T., Hanus L., De Petrocellis L., et al. (2001) Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br. J. Pharmacol. 134, 845–852.

    Article  PubMed  CAS  Google Scholar 

  • Bisogno T., Howell F., Williams G., et al. (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell. Biol. 163, 463–468.

    Article  PubMed  CAS  Google Scholar 

  • Bouaboula M., Bourrie B., Rinaldi-Carmona M., Shire D., Le Fur G., and Casellas P. (1995b) Stimulation of cannabinoid receptor CB1 induces krox-24 expression in human astrocytoma cells. J. Biol. Chem. 270, 13,973–13,980.

    CAS  Google Scholar 

  • Bouaboula M., Poinot-Chazel C., Bourrie B., et al. (1995a) Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem. J. 312, 637–641.

    PubMed  CAS  Google Scholar 

  • Bouaboula M., Poinot-Chazel C., Marchand J., et al. (1996) Signaling pathway associated with stimulation of CB2 peripheral cannabinoid receptor. Involvement of both mitogen-activated protein kinase and induction of Krox-24 expression. Eur. J. Biochem. 237, 704–711.

    Article  PubMed  CAS  Google Scholar 

  • Braida D., Pozzi M., and Sala M. (2000) CP 55,940 protects against ischemia-induced electroencephalographic flattening and hyperlocomotion in Mongolian gerbils. Neurosci. Lett. 296, 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Braida D., Pegorini S., Arcidiacono M., Consalez G., Croci L., and Sala M. (2003) Post-ischemic treatment with cannabidiol prevents electroencephalographic flattening, hyperlocomotion and neuronal injury in gerbils. Neurosci. Lett. 346, 61–64.

    Article  PubMed  CAS  Google Scholar 

  • Breivogel C. S., Griffin G., Di Marzo V., and Martin B. R. (2001) Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Mol. Pharmacol. 60, 155–163.

    PubMed  CAS  Google Scholar 

  • Caulfield M. P. and Brown D. A. (1992) Cannabinoid receptor agonists inhibit Ca current in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br. J. Pharmacol. 106, 231–232.

    PubMed  CAS  Google Scholar 

  • Cernak I., Vink R., Natale J., et al. (2004) The dark side of endocannabinoids: a neurotoxic role for anandamide. J. Cereb. Blood Flow Metab. 24, 564–578.

    Article  PubMed  CAS  Google Scholar 

  • Chan G. C., Hinds T. R., Impey S., and Storm D. R. (1998) Hippocampal neurotoxicity of Delta9-tetrahydrocannabinol. J. Neurosci. 18, 5322–5332.

    PubMed  CAS  Google Scholar 

  • Chemin J., Monteil A., Perez-Reyes E., Nargeot J., and Lory P. (2001) Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. Embo. J. 20, 7033–7040.

    Article  PubMed  CAS  Google Scholar 

  • Childers S. R., Sexton T., and Roy M. B. (1994) Effects of anandamide on cannabinoid receptors in rat brain membranes. Biochem. Pharmacol. 47, 711–715.

    Article  PubMed  CAS  Google Scholar 

  • Clement A., Hawkins E., Lichtman A., and Cravatt B. (2003) Increased seizure susceptibility and proconvulsant activity of anandamide in mice lacking fatty acid amide hydrolase. J. Neurosci. 23, 3916–3923.

    PubMed  CAS  Google Scholar 

  • Deadwyler S. A., Hampson R. E., Mu J., Whyte A., and Childers S. (1995) Cannabinoids modulate voltage sensitive potassium A-current in hippocampal neurons via a cAMP-dependent process. J. Pharmacol. Exp. Ther. 273, 734–743.

    PubMed  CAS  Google Scholar 

  • Deadwyler S. A., Hampson R. E., Bennett B. A., et al. (1993) Cannabinoids modulate potassium current in cultured hippocampal neurons. Receptors Channels 1, 121–134.

    PubMed  CAS  Google Scholar 

  • Di Marzo V. (1998) “Endocannabinoids” and other fatty acid derivatives with cannabimimetic properties: biochemistry and possible physiopathological relevance. Biochim. Biophys. Acta. 1392, 153–175.

    PubMed  Google Scholar 

  • Di Marzo V., Bisogno T., and De Petrocellis L. (2000a) Endocannabinoids: new targets for drug development. Curr. Pharm. Des. 6, 1361–1380.

    Article  PubMed  Google Scholar 

  • Di Marzo V., Melck D., Bisogno T., and De Petrocellis L. (1998) Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci. 21, 521–528.

    Article  PubMed  Google Scholar 

  • Di Marzo V., Fontana A., Cadas H., Schinelli S., Cimino G., Schwartz J. C., and Piomelli D. (1994) Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372, 686–691.

    Article  PubMed  Google Scholar 

  • Di Marzo V., Breivogel C. S., Tao Q., et al. (2000b) Levels, metabolism, and pharmacological activity of anandamide in CB(1) cannabinoid receptor knockout mice: evidence for non-CB(1), non-CB(2) receptor-mediated actions of anandamide in mouse brain. J. Neurochem. 75, 2434–2444.

    Article  PubMed  Google Scholar 

  • Dirnagl U., Iadecola C., and Moskowitz M. A. (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22, 391–397.

    Article  PubMed  CAS  Google Scholar 

  • El-Remessy A., Khalil I., Matragoon S., et al. (2003) Neuroprotective effect of (−)Delta9-tetrahydrocannabinol and cannabidiol in N-methyl-d-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite. Am. J. Pathol. 16, 1997–2008.

    Google Scholar 

  • Felder C. C., Briley E. M., Axelrod J., Simpson J. T., Mackie K., and Devane W. A. (1993) Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction. Proc. Natl. Acad. Sci. USA 90, 7656–7660.

    Article  PubMed  CAS  Google Scholar 

  • Felder C. C., Joyce K. E., Briley E. M., et al. (1995) Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors Mol. Pharmacol. 48, 443–450.

    PubMed  CAS  Google Scholar 

  • Franklin A., Parmentier-Batteur S., Walter M., Greenberg D., and Stella N. (2003) Palmitoylethanolamide increases after focal cerbral ischemia and potentiates microglial cell motility. J. Neurosci. 23, 7767–7775.

    PubMed  CAS  Google Scholar 

  • Gallily R., Breuer A., and Mechoulam R. (2000) 2-Arachidonylglycerol, an endogenous cannabinoid, inhibits tumor necrosis factor-alpha production in murine macrophages, and in mice. Eur. J. Pharmacol. 406, R5–7.

    Article  PubMed  CAS  Google Scholar 

  • Galve-Roperh I., Rueda D., Gomez D. P., Velasco G., and Guzman M. (2002) Mechanism of extracellular signal-regulated kinase activation by the CB(1) cannabinoid receptor. Mol. Pharmacol. 62, 1385–1392.

    Article  PubMed  CAS  Google Scholar 

  • Galve-Roperh I., Sanchez C., Cortes M. L., del Pulgar T. G., Izquierdo M., and Guzman M. (2000) Antitumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat. Med. 6, 313–319.

    Article  PubMed  CAS  Google Scholar 

  • Gebremedhin D., Lange A. R., Campbell W. B., Hillard C. J., and Harder D. R. (1999) Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current Am. J. Physiol. 276, H2085-H2093.

    PubMed  CAS  Google Scholar 

  • Gerdeman G. L., Ronesi J., and Lovinger D. M. (2002) Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat. Neurosci. 25, 25.

    Google Scholar 

  • Glass M. and Felder C. C. (1997) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J. Neurosci. 17, 5327–5333.

    PubMed  CAS  Google Scholar 

  • Gomez Del Pulgar T., De Ceballos M. L., Guzman M., and Velasco G. (2002) Cannabinoids Protect Astrocytes from Ceramide-induced Apoptosis through the Phosphatidylinositol 3-Kinase/Protein Kinase B Pathway. J. Biol. Chem. 277, 36,527–36,533.

    Article  CAS  Google Scholar 

  • Gomez del Pulgar, Velasco G., and Guzman M. (2000) The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt. Biochem. J. 347, 369–373.

    Article  Google Scholar 

  • Gonsiorek W., Lunn C., Fan X., Narula S., Lundell D., and Hipkin R. W. (2000) Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide. Mol. Pharmacol. 57(5), 1045–1050.

    PubMed  CAS  Google Scholar 

  • Grant E. R., Dubin A. E., Zhang S. P., Zivin R. A., and Zhong Z. (2002) Simultaneous intracellular calcium and sodium flux imaging in human vanilloid receptor 1 (VR1)-transfected human embryonic kidney cells: a method to resolve ionic dependence of VR1-mediated cell death. J. Pharmacol. Exp. Ther. 300, 9–17.

    Article  PubMed  CAS  Google Scholar 

  • Guzman M., Galve-Roperh I., and Sanchez C. (2001) Ceramide: a new second messenger of cannabinoid action. Trends Pharmacol. Sci. 22, 19–22.

    Article  PubMed  CAS  Google Scholar 

  • Hajos N. and Freund T. (2002) Pharmacological separation of cannabinoid sensitive receptors on hippocampal excitatory and inhibitory fibers. Neuropharmacology 43, 503.

    Article  PubMed  CAS  Google Scholar 

  • Hajos N., Ledent C., and Freund T. F. (2001) Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus. Neuroscience 106, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Hampson A. J., Grimaldi M., Axelrod J., and Wink D. (1998a) Cannabidiol and (−)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc. Natl. Acad. Sci. USA 95, 8268–8273.

    Article  PubMed  CAS  Google Scholar 

  • Hampson A. J., Bornheim L. M., Scanziani M., et al. (1998b) Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission. J. Neurochem. 70, 671–676.

    Article  PubMed  CAS  Google Scholar 

  • Hampson R. E., Foster T C., and Deadwyler S. A. (1989) Effects of delta-9-tetrahydrocannabinol on sensory evoked hippocampal activity in the rat: principal components analysis and sequential dependency. J. Pharmacol. Exp. Ther. 251, 870–877.

    PubMed  CAS  Google Scholar 

  • Hansen H. H., Ikonomidou C., Bittigau P., Hansen S. H., and Hansen H. S. (2001a) Accumulation of the anandamide precursor and other N-acylethanolamine phospholipids in infant rat models of in vivo necrotic and apoptotic neuronal death. J. Neurochem. 76, 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Hansen H. H., Azcoitia I., Pons S., et al. (2002) Blockade of cannabinoid CB(1) receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity. J. Neurochem. 82, 154–158.

    Article  PubMed  CAS  Google Scholar 

  • Hansen H. H., Schmid P. C., Bittigau P., et al. (2001b) Anandamide, butnot2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. J. Neurochem. 78, 1415–1427.

    Article  PubMed  CAS  Google Scholar 

  • Hansen H. S., Lauritzen L., Strand A. M., Vinggaard A. M., Frandsen A., and Schousboe A. (1997) Characterization of glutamate-induced formation of N-acylphosphatidylethanolamine and N-acylethanolamine in cultured neocortical neurons. J. Neurochem. 69, 753–761.

    Article  PubMed  CAS  Google Scholar 

  • Hanus L., Abu-Lafi S., Fride E., et al. (2001) 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc. Natl. Acad. Sci. USA 98, 3662–3665.

    Article  PubMed  CAS  Google Scholar 

  • Henry D. J. and Chavkin C. (1995) Activation of inwardly rectifying potassium channels (GIRK1) by co-expressed rat brain cannabinoid receptors in Xenopus oocytes. Neurosci. Lett. 186, 91–94.

    Article  PubMed  CAS  Google Scholar 

  • Herkenham M., Lynn A. B., Johnson M. R., Melvin L. S., de Costa B. R., and Rice K. C. (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J. Neurosci. 11, 563–583.

    PubMed  CAS  Google Scholar 

  • Herkenham M., Lynn A. B., Little M. D., et al. (1990) Cannabinoid receptor localization in brain. Proc. Natl. Acad. Sci. USA 87, 1932–1936.

    Article  PubMed  CAS  Google Scholar 

  • Howlett A. C., and Mukhopadhyay S. (2000) Cellular signal transduction by anandamide and 2-arachidonoylglycerol. Chem. Phys. Lipids 108, 53–70.

    Article  PubMed  CAS  Google Scholar 

  • Howlett A. C. Barth F., Bonner T. I., et al. (2002) International Union of Pharmacology. XXVII. Classification of Cannabinoid Receptors Pharmacol. Rev. 54, 161–202.

    CAS  Google Scholar 

  • Howlett A. C. (1995) Pharmacology of cannabinoid receptors Annu. Rev. Pharmacol. Toxicol. 35, 607–634.

    Article  PubMed  CAS  Google Scholar 

  • Huang S. M., Bisogno T., Trevisani M., et al. (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl. Acad. Sci. USA 99, 8400–8405.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsson S. O., Wallin T., and Fowler C. J. (2001) Inhibition of rat C6 glioma cell proliferation by endogenous and synthetic cannabinoids. Relative involvement of cannabinoid and vanilloid receptors. J. Pharmacol. Exp. Ther. 299, 951–959.

    PubMed  CAS  Google Scholar 

  • Jin K. L., Mao X. O., Goldsmith P. C., and Greenberg D. A. (2000) CB1 cannabinoid receptor induction in experimental stroke. Ann Neurol 48, 257–261.

    Article  PubMed  CAS  Google Scholar 

  • Kermer P., Klocker N., and Bahr M. (1999) Neuronal death after brain injury. Models, mechanisms, and therapeutic strategies in vivo. Cell Tissue Res. 298, 383–395.

    Article  PubMed  CAS  Google Scholar 

  • Khaspekov L., Brenz Verca M., Frumkina L. E., Hermann H., Marsicano G., and Lutz B. (2004) Involvement of brain-derived neurotrophic factor in cannabinoid receptor-dependent protection against excitotoxicity. Eur. J. Neurosci. 19, 1691–1698.

    Article  PubMed  Google Scholar 

  • Kreitzer A. C. and Regehr W. G. (2001) Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron. 29, 717–727.

    Article  PubMed  CAS  Google Scholar 

  • Leker R., Gai N., Mechoulam R., and Ovadia H. (2003) Drug-induced hypothermia reduces ischemic damage: effects of the cannabinoid HU-210. Stroke 34, 2000–2006.

    Article  PubMed  CAS  Google Scholar 

  • Lipton S. (2003) Possible role for memantine in protecting retinal ganglion cells from glaucomatous damage. Surv. Ophthalmol. Suppl. 1, S38–46.

    Article  Google Scholar 

  • Liu J., Gao B., Mirshahi F., et al. (2000) Functional CB1 cannabinoid receptors in human vascular endothelial cells. Biochem. J. 346, 835–840.

    Article  PubMed  CAS  Google Scholar 

  • Louw D. F., Yang F. W., and Sutherland G. R. (2000) The effect of delta-9-tetrahydrocannabinol on forebrain ischemia in rat. Brain Res. 857, 183–187.

    Article  PubMed  CAS  Google Scholar 

  • Lutz B. (2004) On-demand activation of the endocannabinoid system in the control of neuronal excitability and epileptiform seizures. Biochem. Pharmacol. 68:1691–1698.

    Article  PubMed  CAS  Google Scholar 

  • Maccarrone M., Lorenzon T., Bari M., Melino G., and Finazzi-Agro A. (2000) Anandamide induces apoptosis in human cells via vanilloid receptors. Evidence for a protective role of cannabinoid receptors. J. Biol. Chem. 275, 31,938–31,945.

    CAS  Google Scholar 

  • Mackie K., Devane W. A., and Hille B. (1993) Anandamide, an endogenous cannabinoid, inhibits calcium currents as a partial agonist in N18 neuroblastoma cells. Mol. Pharmacol. 44, 498–503.

    PubMed  CAS  Google Scholar 

  • Mackie K. and Hille B. (1992) Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc. Natl. Acad. Sci. USA 89, 3825–3829.

    Article  PubMed  CAS  Google Scholar 

  • Mackie K., Lai Y., Westenbroek R., and Mitchell R. (1995) Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J. Neurosci. 15(10), 6552–6561.

    PubMed  CAS  Google Scholar 

  • Maingret F., Patel A. J., Lazdunski M., and Honore E. (2001) The endocannabinoid anandamide is a direct and selective blocker of the background K(+) channel TASK-1. Embo. J. 20, 47–54.

    Article  PubMed  CAS  Google Scholar 

  • Marsicano G., Moosmann B., Hermann H., Lutz B., and Behl C. (2002) Neuroprotective properties of cannabinoids against oxidative stress: role of the cannabinoid receptor CB1. J. Neurochem. 80, 448–456.

    Article  PubMed  CAS  Google Scholar 

  • Marsicano G., Goodenough S., Monory K., et al. (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302, 84–88.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Orgado J., Fernandez-Frutos B., Gonzalez R., et al. (2003) Neuroprotection by the cannabinoid agonist WIN-55212 in an in vivo newborn rat model of acute severe asphyxia. Brain Res. Mol. 114, 132–139.

    Article  CAS  Google Scholar 

  • Matsuda L. A., Lolait S. J., Brownstein M. J., Young A. C., and Bonner T. I. (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564.

    Article  PubMed  CAS  Google Scholar 

  • Mauler F., Mittendorf J., Horvath E., and De Vry J. (2002) Characterization of the diarylether sulfonylester (−)-(R)-3-(2- hydroxymethylindanyl-4-oxy)phenyl-4,4,4-trifluoro-1-sulfonate (BAY 38-7271) as a potent cannabinoid receptor agonist with neuroprotective properties. J. Pharmacol. Exp. Ther. 302, 359–368.

    Article  PubMed  CAS  Google Scholar 

  • McAllister S. D., Griffin G., Satin L. S., and Abood M. E. (1999) Cannabinoid receptors can activate and inhibit G protein-coupled inwardly rectifying potassium channels in a xenopus oocyte expression system J. Pharmacol. Exp. Ther. 291, 618–626.

    PubMed  CAS  Google Scholar 

  • Mechoulam R., Panikashvili D., and Shohami E. (2002) Cannabinoids and brain injury: therapeutic implications. Trends Mol. Med. 8, 58–61.

    Article  PubMed  CAS  Google Scholar 

  • Molina-Holgado E., Vela J., Arevalo-Martin A., et al. (2002) Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J. Neurosci. 22, 9742–9753.

    PubMed  CAS  Google Scholar 

  • Molina-Holgado F., Pinteaux E., Moore J., et al. (2003) Endogenous interleukin-1 receptor antagonist mediates anti-inflammatory and neuroprotective actions of cannabinoids in neurons and glia. J. Neurosci. 23, 6470–6474.

    PubMed  CAS  Google Scholar 

  • Molina-Holgado F., Pinteaux E., Heenan L., Moore J. D., Rothwell N. J., and Gibson R. M. Neuroprotective effects of the synthetic cannabinoid HU-210 in primary cortical neurons are mediated by phosphatidylinositol 3-kinase/AKT signaling Mol. Cell Neurosci., in press.

  • Munro S., Thomas K. L., and Abu-Shaar M. (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65.

    Article  PubMed  CAS  Google Scholar 

  • Muthian S., Rademacher D. J., Roelke C. T., Gross G. J., and Hillard C. (2004) Anandamide content is increased and Cb1 cannabinoid receptor blockade is protective during transient, focal cerebral ischemia. Neurosci. 129, 743–750.

    Article  CAS  Google Scholar 

  • Nagayama T., Sinor A. D., Simon R. P., et al. (1999) Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J. Neurosci. 19, 2987–2995.

    PubMed  CAS  Google Scholar 

  • Netzeband J. G., Conroy S. M., Parsons K. L., and Gruol D. L. (1999) Cannabinoids enhance NMDA-elicited Ca2+ signals in cerebellar granule neurons in culture. J. Neurosci. 19, 8765–8777.

    PubMed  CAS  Google Scholar 

  • Nicotera P., Leist M., and Manzo L. (1999) Neuronal cell death: a demise with different shapes. Trends Pharmacol. Sci. 20, 46–51.

    Article  PubMed  CAS  Google Scholar 

  • Ohno-Shosaku T., Maejima T., and Kano M. (2001) Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron. 29, 729–738.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto Y., Morishita J., Tsuboi K., Tonai T., and Ueda N. (2004), Molecular characterization of a phospholipase D generating anandamide and Its congeners. J. Biol. Chem. 279, 5298–5305

    Article  PubMed  CAS  Google Scholar 

  • Pan X., Ikeda S. R., and Lewis D. L. (1996) Rat brain cannabinoid receptor modulates N-type Ca2+ channels in a neuronal expression system Mol. Pharmacol. 49, 707–714.

    PubMed  CAS  Google Scholar 

  • Panikashvili D., Simeonidou C., Ben-Shabat S., et al. (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413, 527–531.

    Article  PubMed  CAS  Google Scholar 

  • Parmentier-Batteur S., Jin K., Mao X., Xie L., and Greenberg D. (2002) Increased severity of stroke in CB1 cannabinoid receptor knock-out mice. J. Neurosci. 22, 9771–9775.

    PubMed  CAS  Google Scholar 

  • Pinto J. C., Potie F., Rice K. C., et al. (1994) Cannabinoid receptor binding and agonist activity of amides and esters of arachidonic acid Mol. Pharmacol. 46, 516–522.

    PubMed  CAS  Google Scholar 

  • Porter A. C., Sauer J. M., Knierman M. D., et al. (2002) Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J. Pharmacol. Exp. Ther. 301, 1020–1024.

    Article  PubMed  CAS  Google Scholar 

  • Priller J., Briley E. M., Mansouri J., Devane W. A., Mackie K., and Felder C. C. (1995) Mead ethanolamide, a novel eicosanoid, is an agonist for the central (CB1) and peripheral (CB2) cannabinoid receptors Mol. Pharmacol. 48, 288–292.

    PubMed  CAS  Google Scholar 

  • Rhee M. H., Bayewitch M., Avidor-Reiss T., Levy R., and Vogel Z. (1998) Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes J. Neurochem. 71, 1525–1534.

    Article  PubMed  CAS  Google Scholar 

  • Robbe D., Kopf M., Remaury A., Bockaert J., and Manzoni O. J. (2002) Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc. Natl. Acad. Sci. USA 99, 8384–8388.

    Article  PubMed  CAS  Google Scholar 

  • Rueda D., Galve-Roperh I., Haro A., and Guzman M. (2000) The CB(1) cannabinoid receptor is coupled to the activation of c-Jun N-terminal kinase Mol. Pharmacol. 58, 814–820.

    PubMed  CAS  Google Scholar 

  • Sagan S., Venance L., Torrens Y., Cordier J., Glowinski J., and Giaume C. (1999) Anandamide and WIN 55212-2 inhibit cyclic AMP formation through G-protein-coupled receptors distinct from CB1 cannabinoid receptors in cultured astrocytes. Eur. J. Neurosci. 11, 691–699.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C., de Ceballos M. L., del Pulgar T. G., et al. (2001) Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor Cancer Res. 61, 5784–5789.

    PubMed  CAS  Google Scholar 

  • Sanchez C., Galve-Roperh I., Rueda D., and Guzman M. (1998) Involvement of sphingomyelin hydrolysis and the mitogen-activated protein kinase cascade in the Delta9-tetrahydrocannabinol-induced stimulation of glucose metabolism in primary astrocytes Mol. Pharmacol. 54, 834–843.

    PubMed  CAS  Google Scholar 

  • Schlicker E. and Kathmann M. (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol. Sci. 22, 565–572.

    Article  PubMed  CAS  Google Scholar 

  • Shen M. and Thayer S. A. (1998a) Cannabinoid receptor agonists protect cultured rat hippocampal neurons from excitotoxicity. Mol. Pharmacol. 54, 459–462.

    PubMed  CAS  Google Scholar 

  • Shen M. and Thayer S. A. (1998b) The cannabinoid agonist Win55, 212-2 inhibits calcium channels by receptor-mediated and direct pathways in cultured rat hippocampal neurons. Brain Res. 783, 77–84.

    Article  PubMed  CAS  Google Scholar 

  • Sinor A. D., Irvin S. M., and Greenberg D. A. (2000) Endocannabinoids protect cerebral cortical neurons from in vitro ischemia in rats. Neurosci. Lett. 278, 157–160.

    Article  PubMed  CAS  Google Scholar 

  • Skaper S. D., Buriani A., Dal Toso R., et al. (1996) The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons. Proc. Natl. Acad. Sci. USA 93, 3984–3989.

    Article  PubMed  CAS  Google Scholar 

  • Slipetz D. M., O’Neill G. P., Favreau L., et al. (1995) Activation of the human peripheral cannabinoid receptor results in inhibition of adenylyl cyclase Mol. Pharmacol. 48, 352–361.

    PubMed  CAS  Google Scholar 

  • Smart D. and Jerman J. C. (2000) Anandamide: an endogenous activator of the vanilloid receptor. Trends Pharmacol. Sci. 21, 134.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura T., Kodaka T., Kondo S., et al. (1997b) Is the cannabinoid CB1 receptor a 2-arachidonoylglycerol receptor? Structural requirements for triggering a Ca2+ transient in NG108-15 cells J. Biochem. (Tokyo) 122, 890–895.

    CAS  Google Scholar 

  • Sugiura T., Kodaka T., Kondo S., et al. (1996) 2-Arachidonoylglycerol, a putative endogenous cannabinoid receptor ligand, induces rapid, transient elevation of intracellular free Ca2+ in neuroblastoma × glioma hybrid NG108-15 cells Biochem. Biophys. Res. Commun. 229, 58–64.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura T., Kodaka T., Kondo S., et al. (1997a) Inhibition by 2-arachidonoylglycerol, a novel type of possible neuromodulator, of the depolarization-induced increase in intracellular free calcium in neuroblastoma × glioma hybrid NG108-15 cells Biochem. Biophys. Res. Commun. 233, 207–210.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura T., Kodaka T., Nakane S., et al. (1999) Evidence that the cannabinoid CB1 receptor is a 2-arachidonoylglycerol receptor. Structure-activity relationship of 2-arachidonoylglycerol, ether-linked analogues, and related compounds J. Biol. Chem. 274, 2794–2801.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura T., Yoshinaga N., Kondo S., Waku K., and Ishima Y. (2000) Generation of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, in picrotoxinin-administered rat brain. Biochem. Biophys. Res. Commun. 271, 654–658.

    Article  PubMed  CAS  Google Scholar 

  • Tsou K., Brown S., Sanudo-Pena M. C., Mackie K., and Walker J. M. (1998) Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83, 393–411.

    Article  PubMed  CAS  Google Scholar 

  • van der Stelt M., Veldhuis W. B., Bar P. R., Veldink G. A., Vliegenthart J. F., and Nicolay K. (2001a) Neuroprotection by Delta9-tetrahydrocannabinol, the main active compound in marijuana, against ouabain-induced in vivo excitotoxicity. J. Neurosci. 21, 6475–6479.

    PubMed  Google Scholar 

  • van der Stelt M., Veldhuis W. B., Maccarrone M., et al. (2002) Acute neuronal injury, excitotoxicity, and the endocannabinoid system. Mol. Neurobiol. 26, 317–346.

    Article  PubMed  Google Scholar 

  • van der Stelt M., Veldhuis W. B., van Haaften G. W., et al. (2001b) Exogenous anandamide protects rat brain against acute neuronal injury in vivo. J. Neurosci. 21, 8765–8771.

    PubMed  Google Scholar 

  • Veldhuis W., Van der Stelt M., Wadman M., et al. (2003) Neuroprotection by the endogenous cannabinoid anandamide and arvanil against in vivo excitotoxicity in the rat: role of vanilloid receptors and lipoxygenases. J. Neurosci. in press.

  • Vogel Z., Barg J., Levy R., Saya D., Heldman E., and Mechoulam R. (1993) Anandamide, a brain endogenous compound, interacts specifically with cannabinoid receptors and inhibits adenylate cyclase J. Neurochem. 61, 352–355.

    Article  PubMed  CAS  Google Scholar 

  • Walter L. and Stella N. (2004) Cannabinoids and neuroinflammation Br. J. Pharmacol. 141, 775–785.

    Article  PubMed  CAS  Google Scholar 

  • Wartmann M., Campbell D., Subramanian A., Burstein S. H., and Davis R. J. (1995) The MAP kinase signal transduction pathway is activated by the endogenous cannabinoid anandamide FEBS Lett 359, 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Wilson R. I. and Nicoll R. A. (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592.

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt P. M., Petersson J., Andersson D. A., et al. (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Di Marzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Stelt, M., Di Marzo, V. Cannabinoid receptors and their role in neuroprotection. Neuromol Med 7, 37–50 (2005). https://doi.org/10.1385/NMM:7:1-2:037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:7:1-2:037

Index Entries

Navigation