Skip to main content
Log in

Development of a model for microphysiological simulations

Small nodes of ranvier from peripheral nerves of mice reconstructed by electron tomography

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The node of Ranvier is a complex structure found along myelinated nerves of vertebrate animals. Specific membrane, cytoskeletal, junctional, extracellular matrix proteins and organelles interact to maintain and regulate associated ion movements between spaces in the nodal complex, potentially influencing response variation during repetitive activations or metabolic stress. Understanding and building high resolution three dimensional (3D) structures of the node of Ranvier, including localization of specific macromolecules, is crucial to a better understanding of the relationship between its structure and function and the macromolecular basis for impaired conduction in disease. Using serial section electron tomographic methods, we have constructed accurate 3D models of the nodal complex from mouse spinal roots with resolution better than 7.5nm. These reconstructed volumes contain 75–80% of the thickness of the nodal region. We also directly imaged the glial axonal junctions that serve to anchor the terminal loops of the myelin lamellae to the axolemma. We created a model of an intact node of Ranvier by truncating the volume at its mid-point in Z, duplicating the remaining volume and then merging the new half volume with mirror symmetry about the Z-axis. We added to this model the distribution and number of Na+ channels on this reconstruction using tools associated with the MCell simulation program environment. The model created provides accurate structural descriptions of the membrane compartments, external spaces, and formed structures enabling more realistic simulations of the role of the node in modulation of impulse propagation than have been conducted on myelinated nerve previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PNS:

peripheral nervous system

CNS:

central nervous system

HPF:

high pressure freezing

EMT:

electron microscopic tomography

References

  • Agnew, W.S., J.A. Miller, M.H. Ellisman, R.L. Rosenberg, S.A. Tomiko, and S.R. Levinson. (1983) The voltage-regulated sodium channel from the electroplax of Electrophorus electricus. Cold Spring Harb Symp Quant Biol. 48 Pt 1:165–79.

    PubMed  CAS  Google Scholar 

  • Altevogt, B.M., K.A. Kleopa, F.R. Postma, S.S. Scherer, and D.L. Paul (2002) Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems. J Neurosci. 22:6458–70.

    PubMed  CAS  Google Scholar 

  • Alvarez-Leefmans, F.J., M. Leon-Olea, J. Mendoza-Sotelo, F.J. Alvarez, B. Anton, and R. Garduno. (2001) Immunolocalization of the Na(+)-K(+)-2Cl(−) cotransporter in peripheral nervous tissue of vertebrates. Neuroscience. 104:569–82.

    Article  PubMed  CAS  Google Scholar 

  • Ariyasu, R.G., J.A. Nichol, and M.H. Ellisman. (1985) Localization of sodium/potassium adenosine triphosphatase in multiple cell types of the murine nervous system with antibodies raised against the enzyme from kidney. J Neurosci. 5:2581–96.

    PubMed  CAS  Google Scholar 

  • Balda, M.S., and K. Matter. (2000) The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. Embo J. 19:2024–33.

    Article  PubMed  CAS  Google Scholar 

  • Barres, B.A. (1991) New roles for glia. J Neurosci. 11:3685–94.

    PubMed  CAS  Google Scholar 

  • Bartol, T.M., Jr., B.R. Land, E.E. Salpeter, and M.M. Salpeter. (1991) Monte Carlo simulation of miniature end plate current generation in the vertebrate neuromuscular junction. Biophys J. 59:1290–307.

    PubMed  CAS  Google Scholar 

  • Bergoffen, J., S.S. Scherer, S. Wang, M. Oronzi Scott, L.J. Bone, D.L. Paul, K. Chen, M.W. Lensch, P.F. Chance, and K.H. Fischbeck. (1993) Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science. 262:2039–2042.

    Article  PubMed  CAS  Google Scholar 

  • Berthold, C.H. (1996) Development of nodes of Ranvier in feline nerves: an ultrastructural presentation. Microsc Res Tech. 34:399–421.

    Article  PubMed  CAS  Google Scholar 

  • Berthold, C.H., I. Nilsson, and M. Rydmark. (1983) Axon diameter and myelin sheath thickness in nerve fibres of the ventral spinal root of the seventh lumbar nerve of the adult and developing cat. J Anat. 136 (Pt 3):483–508.

    PubMed  CAS  Google Scholar 

  • Berthold, C.H., and S. Skoglund. (1968) Postnatal development of feline paranodal myelin-sheath segments. II. Electron microscopy. Acta Soc. Med. Ups. 73:127–144.

    PubMed  CAS  Google Scholar 

  • Bhat, M.A., J.C. Rios, Y. Lu, G.P. Garcia-Fresco, W. Ching, M. St Martin, J. Li, S. Einheber, M. Chesler, J. Rosenbluth, J.L. Salzer, and H.J. Bellen. (2001) Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron. 30:369–83.

    Article  PubMed  CAS  Google Scholar 

  • Black, J.A., R.E. Foster, and S.G. Waxman. (1982) Rat optic nerve: freeze-fracture studies during development of myelinated axons. Brain Res. 250:1–20.

    Article  PubMed  CAS  Google Scholar 

  • Boyle, M.E., E.O. Berglund, K.K. Murai, L. Weber, E. Peles, and B. Ranscht. (2001) Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron. 30:385–97.

    Article  PubMed  CAS  Google Scholar 

  • Carley, L.R., and S.A. Raymond. (1987) Comparison of the after-effects of impulse conduction on threshold at nodes of Ranvier along single frog sciatic axons. J Physiol. 386:503–27.

    PubMed  CAS  Google Scholar 

  • Chiu, S.Y. (1991) Functions and distribution of voltage-gated sodium and potassium channels in mammalian Schwann cells. Glia. 4:541–58.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, R., and L.A. Staehelin. (1989) High-pressure freezing for the preservation of biological structure: theory and practice. J Electron Microsc Tech. 13:165–74.

    Article  PubMed  CAS  Google Scholar 

  • Dupree, J.L., J.A. Girault, and B. Popko. (1999) Axoglial interactions regulate the localization of axonal paranodal proteins. J Cell Biol. 147:1145–52.

    Article  PubMed  CAS  Google Scholar 

  • Ellisman, M.H. (1979) Molecular specializations of the axon membrane at nodes of Ranvier are not dependent upon myelination. J Neurocytol. 8:719–35.

    Article  PubMed  CAS  Google Scholar 

  • Ellisman, M.H., W.S. Agnew, J.A. Miller, and S.R. Levinson. (1982) Electron microscopic visualization of the tetrodotoxin-binding protein from Electrophorus electricus. Proc Natl Acad Sci U S A. 79:4461–5.

    Article  PubMed  CAS  Google Scholar 

  • Ellisman, M.H., and S.R. Levinson. (1982) Immunocytochemical localization of sodium channel distributions in the excitable membranes of Electrophorus electricus. Proc Natl Acad Sci U S A. 79:6707–11.

    Article  PubMed  CAS  Google Scholar 

  • Ellisman, M.H., D.E. Palmer, and M.P. Andre. (1987) Diagnostic levels of ultrasound may disrupt myelination. Exp Neurol. 98:78–92.

    Article  PubMed  CAS  Google Scholar 

  • Ellisman, M.H., and K.R. Porter. (1980) Microtrabecular structure of the axoplasmic matrix: visualization of cross-linking structures and their distribution. J Cell Biol. 87:464–79.

    Article  PubMed  CAS  Google Scholar 

  • Ellisman, M.H., C.A. Wiley, J.D. Lindsey, and C.C. Wurtz. (1984) Structure and function of the cytoskeleton and endomembrane systems at the node of Ranvier. In The Node of Ranvier. J. Zagroen and S. Federoff, editors. Academic Press, New York. 153–181.

    Google Scholar 

  • Endres, W., P. Grafe, H. Bostock, and G. ten Bruggencate. (1986) Changes in extracellular pH during electrical stimulation of isolated rat vagus nerve. Neurosci Lett. 64:201–5.

    Article  PubMed  CAS  Google Scholar 

  • Esquenazi, E., J.S. Coggan, T.M. Bartol, R.D. Shoop, T.J. Sejnowski, M.H. Ellisman, and D.K. Berg. (2001) Computer simulation of synaptic ultrastructure and microphysiology in the chick ciliary ganglion. Society for Neuroscience Abstract.

  • Fan, G.Y., S.J. Young, T. Deerinck, and M.H. Ellisman. (1996) A new electron-optical mode for high contrast imaging and online stereo observation in TEM. Journal of the Microscopy Society of America. 2:137–146.

    CAS  Google Scholar 

  • Fannon, A.M., D.L. Sherman, G. Ilyina-Gragerova, P.J. Brophy, V.L. Friedrich, Jr., and D.R. Colman. (1995) Novel E-cadherin-mediated adhesion in peripheral nerve: Schwann cell architecture is stabilized by autotypic adherens junctions. J Cell Biol. 129:189–202.

    Article  PubMed  CAS  Google Scholar 

  • Fawcett, J.W., and R.J. Keynes. (1990) Peripheral nerve regeneration. Annu Rev Neurosci. 13:43–60.

    Article  PubMed  CAS  Google Scholar 

  • Frank, J. (1989) Image analysis of single macromolecules. Electr.Microsc.Rev. 2:53–74.

    Article  CAS  Google Scholar 

  • Franks, K.M., T.M. Bartol, Jr., and T.J. Sejnowski. (2002) A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys J. 83:2333–48.

    PubMed  CAS  Google Scholar 

  • Gatto, C.L., B.J. Walker, and S. Lambert. (2003) Local ERM activation and dynamic growth cones at Schwann cell tips implicated in efficient formation of nodes of Ranvier. J Cell Biol. 162:489–98.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, C.S., D.L. Sherman, G.E. Blair, and P.J. Brophy. (1994) Periaxin, a novel protein of myelinating Schwann cells with a possible role in axonal ensheathment. Neuron. 12:497–508.

    Article  PubMed  CAS  Google Scholar 

  • Girault, J.A., and E. Peles. (2002) Development of nodes of Ranvier. Curr Opin Neurobiol. 12:476–85.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, J.W., C.Y. Li, C. Macko, T.W. Ho, S.T. Hsieh, P. Xue, F.A. Wang, D.R. Cornblath, G.M. McKhann, and A.K. Asbury. (1996) Early nodal changes in the acute motor axonal neuropathy pattern of the Guillain-Barre syndrome. J Neurocytol. 25:33–51.

    Article  PubMed  CAS  Google Scholar 

  • Halter, J.A., and J.W. Clark, Jr. (1993) The influence of nodal constriction on conduction velocity in myelinated nerve fibers. Neuroreport. 4:89–92.

    Article  PubMed  CAS  Google Scholar 

  • Harlow, M.L., D. Ress, A. Stoschek, R.M. Marshall, and U.J. McMahan. (2001) The architecture of active zone material at the frog’s neuromuscular junction. Nature. 409:479–84.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B. (1992) Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Hines, M.L., and N.T. Carnevale. (2001) NEURON: a tool for neuroscientists. Neuroscientist. 7:123–35.

    Article  PubMed  CAS  Google Scholar 

  • Ichimura, T., and M.H. Ellisman. (1991) Three-dimensional fine structure of cytoskeletal-membrane interactions at nodes of Ranvier. J Neurocytol. 20:667–81.

    Article  PubMed  CAS  Google Scholar 

  • Ionasescu, V.V. (1995) Charcot-Marie-Tooth neuropathies: From clinical description to molecular genetics. Muscle and Nerve. 18:267–275.

    Article  PubMed  CAS  Google Scholar 

  • Kazarinova-Noyes, K., J.D. Malhotra, D.P. McEwen, L.N. Mattei, E.O. Berglund, B. Ranscht, S.R. Levinson, M. Schachner, P. Shrager, L.L. Isom, and Z.C. Xiao. (2001) Contactin associates with Na+ channels and increases their functional expression. J Neurosci. 21:7517–25.

    PubMed  CAS  Google Scholar 

  • Kirkpatrick, C., and M. Peifer. (1995) Not just glue: cell-cell junctions as cellular signaling centers. Curr Opin Genet Dev. 5:56–65.

    Article  PubMed  CAS  Google Scholar 

  • Kremer, J.R., D.N. Mastronarde, and J.R. McIntosh. (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol. 116:71–6.

    Article  PubMed  CAS  Google Scholar 

  • Kristol, C., C. Sandri, and K. Akert. (1978) Intramembranous particles at the nodes of Ranvier of the cat spinal cord: a morphometric study. Brain Res. 142:391–400.

    Article  PubMed  CAS  Google Scholar 

  • Ladinsky, M.S., J.R. Kremer, R.S. Furcinitti, J.R. McIntosh, and K.E. Howell. (1994) HVEM tomography of the trans-Golgi network: structural insights and identification of a lace-like vesicle coat. J. Cell Biol. 127:29–38.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, S., J.Q. Davis, and V. Bennett. (1997) Morphogenesis of the node of Ranvier: co-clusters of ankyrin and ankyrin-binding integral proteins define early developmental intermediates. J Neurosci. 17:7025–36.

    PubMed  CAS  Google Scholar 

  • Lenzi, D., J.W. Runyeon, J. Crum, M.H. Ellisman, and W.M. Roberts. (1999) Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography. J Neurosci. 19:119–32.

    PubMed  CAS  Google Scholar 

  • Lev-Ram, V., and M.H. Ellisman. (1995) Axonal activation-induced calcium transients in myelinating Schwann cells, sources, and mechanisms. J Neurosci. 15:2628–37.

    PubMed  CAS  Google Scholar 

  • Lev-Ram, V., and A. Grinvald. (1986) Ca2+- and K+-dependent communication between central nervous system myelinated axons and oligodendrocytes revealed by voltage-sensitive dyes. Proc Natl Acad Sci U S A. 83:6651–5.

    Article  PubMed  CAS  Google Scholar 

  • Lev-Ram, V., and A. Grinvald. (1987) Activity-dependent calcium transients in central nervous system myelinated axons revealed by the calcium indicator Fura-2. Biophys. J. 52:571–6.

    PubMed  CAS  Google Scholar 

  • Livingston, R.B., K. Pfenniger, H. Moor, and K. Akert. (1973) Specialized paranodal and interparanodal glial-axonal junctions in the peripheral and central nervous system: a freeze-etching study. Brain Res. 58:1–24.

    Article  PubMed  CAS  Google Scholar 

  • Mannella, C.A., M. Marko, P. Penczek, D. Barnard, and J. Frank. (1994) The internal compartmentation of rat-liver mitochondria: tomographic study using the high-voltage transmission electron microscope. Microsc Res Tech. 27:278–83.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, B.J., D.N. Mastronarde, K.F. Buttle, K.E. Howell, and J.R. McIntosh. (2001) Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc Natl Acad Sci U S A. 98:2399–406.

    Article  PubMed  CAS  Google Scholar 

  • Martin, S., A.K. Levine, Z.J. Chen, Y. Ughrin, and J.M. Levine. (2001) Deposition of the NG2 proteoglycan at nodes of Ranvier in the peripheral nervous system. J Neurosci. 21:8119–28.

    PubMed  CAS  Google Scholar 

  • Martini, R. (2001) The effect of myelinating Schwann cells on axons. Muscle Nerve. 24:456–66.

    Article  PubMed  CAS  Google Scholar 

  • Martone, M.E., A. Gupta, and M.H. Ellisman. (2004) E-neuroscience: challenges and triumphs in integrating distributed data from molecules to brains. Nat Neurosci. 7:467–72.

    Article  PubMed  CAS  Google Scholar 

  • Martone, M.E., A. Gupta, M. Wong, X. Qian, G. Sosinsky, B. Ludascher, and M.H. Ellisman. (2002) A cell-centered database for electron tomographic data. J Struct Biol. 138:145–55.

    Article  PubMed  CAS  Google Scholar 

  • Martone, M.E., Y.Z. Jones, S.J. Young, M.H. Ellisman, J.A. Zivin, and B.R. Hu. (1999) Modification of postsynaptic densities after transient cerebral ischemia: a quantitative and three-dimensional ultrastructural study. J Neurosci. 19:1988–97.

    PubMed  CAS  Google Scholar 

  • Martone, M.E., S. Zhang, A. Gupta, X. Qian, H. He, D.L. Price, M. Wong, S. Santini, and M.H. Ellisman. (2003) The cell-centered database: a database for multiscale structural and protein localization data from light and electron microscopy. Neuroinformatics. 1:379–95.

    Article  PubMed  Google Scholar 

  • Mastronarde, D.N. (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol. 120:343–52.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, W.L., A. Irvine, Graham, J.H. Adams, T.A. Gennarelli, R. Tipperman, and M. Sturatis. (1991) Focal axonal injury: the early axonal response to stretch. J Neurocytol. 20:157–64.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, K. (1999) High-pressure freezing for preservation of high resolution fine structure and antigenicity for immunolabeling. Methods Mol Biol. 117:77–97.

    Article  PubMed  CAS  Google Scholar 

  • Medalia, O., I. Weber, A.S. Frangakis, D. Nicastro, G. Gerisch, and W. Baumeister. (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science. 298:1209–13.

    Article  PubMed  CAS  Google Scholar 

  • Melendez-Vasquez, C.V., J.C. Rios, G. Zanazzi, S. Lambert, A. Bretscher, and J.L. Salzer. (2001) Nodes of Ranvier form in association with ezrin-radixin-moesin (ERM)- positive Schwann cell processes. Proc Natl Acad Sci U S A. 98:1235–40.

    Article  PubMed  CAS  Google Scholar 

  • Mi, H., T.J. Deerinck, M.H. Ellisman, and T.L. Schwarz. (1995) Differential distribution of closely related potassium channels in rat Schwann cells. J Neurosci. 15:3761–74.

    PubMed  CAS  Google Scholar 

  • Mi, H., T.J. Deerinck, M. Jones, M.H. Ellisman, and T.L. Schwarz. (1996) Inwardly rectifying K+ channels that may participate in K+ buffering are localized in microvilli of Schwann cells. J Neurosci. 16:2421–9.

    PubMed  CAS  Google Scholar 

  • Mi, H., R.M. Harris-Warrick, T.J. Deerinck, I. Inman, M.H. Ellisman, and T.L. Schwarz. (1999) Identification and localization of Ca(2+)-activated K+ channels in rat sciatic nerve. Glia. 26:166–75.

    Article  PubMed  CAS  Google Scholar 

  • Moor, H. (1987) Theory and practice of high pressure freezing. In Cryotechniques in Biological Electron Microscopy. R.A.Z. Steinbrecht, K. Steinbrecht,, editor. Springer-Verlag, Berlin. 175–191.

    Google Scholar 

  • Murray, N., and A.J. Steck. (1984) Impulse conduction regulates myelin basic protein phosphorylation in rat optic nerve. J Neurochem. 43:243–8.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, T., J. Blechman, S. Tada, T. Rozovskaia, T. Itoyama, F. Bullrich, A. Mazo, C.M. Croce, B. Geiger, and E. Canaani. (2000) huASH1 protein, a putative transcription factor encoded by a human homologue of the Drosophila ash1 gene, localizes to both nuclei and cell-cell tight junctions. Proc Natl Acad Sci U S A. 97:7284–9.

    Article  PubMed  CAS  Google Scholar 

  • Nicastro, D., A.S. Frangakis, D. Typke, and W. Baumeister. (2000) Cryo-electron tomography of neurospora mitochondria. J Struct Biol. 129:48–56.

    Article  PubMed  CAS  Google Scholar 

  • Paul, D.L. (1995) New functions for gap junctions. Curr Opin Cell Biol. 7:665–72.

    Article  PubMed  CAS  Google Scholar 

  • Penczek, P., M. Marko, K. Buttle, and J. Frank. (1995) Double-tilt electron tomography. Ultramicrosc. 60:393–410.

    Article  CAS  Google Scholar 

  • Perkins, G., C. Renken, M.E. Martone, S.J. Young, M. Ellisman, and T. Frey. (1997a) Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J Struct Biol. 119:260–72.

    Article  PubMed  CAS  Google Scholar 

  • Perkins, G.A., C.W. Renken, J.Y. Song, T.G. Frey, S.J. Young, S. Lamont, M.E. Martone, S. Lindsey, and M.H. Ellisman. (1997b) Electron tomography of large, multicomponent biological structures. J Struct Biol. 120:219–27.

    Article  PubMed  CAS  Google Scholar 

  • Poliak, S., L. Gollan, D. Salomon, E.O. Berglund, R. Ohara, B. Ranscht, and E. Peles. (2001) Localization of Caspr2 in myelinated nerves depends on axonglia interactions and the generation of barriers along the axon. J Neurosci. 21:7568–75.

    PubMed  CAS  Google Scholar 

  • Rios, J.C., M. Rubin, M. St Martin, R.T. Downey, S. Einheber, J. Rosenbluth, S.R. Levinson, M. Bhat, and J.L. Salzer. (2003) Paranodal interactions regulate expression of sodium channel subtypes and provide a diffusion barrier for the node of Ranvier. J Neurosci. 23:7001–11.

    PubMed  CAS  Google Scholar 

  • Ritchie, J.M., and R.B. Rogart. (1976) The binding of labelled saxitoxin to normal and denervated muscle [proceedings]. J Physiol. 263:129P-130P.

    PubMed  CAS  Google Scholar 

  • Ritchie, J.M., and R.B. Rogart. (1977) Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelin sheath. Proc Natl Acad Sci U S A. 74:211–5.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbluth, J. (1976) Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain. J Neurocytol. 5:731–45.

    Article  PubMed  CAS  Google Scholar 

  • Salzer, J.L. (2003) Polarized domains of myelinated axons. Neuron. 40:297–318.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, S.S., L.J. Bone, S.M. Deschênes, A. Abel, R.J. Balice-Gordon, and K.H. Fischbeck. (1999) The role of the gap junction protein connexin32 in the pathogenesis of X-linked Charcot-Marie-Tooth disease. Novartis Foundation Symposium. 219:175–187.

    PubMed  CAS  Google Scholar 

  • Scherer, S.S., T. Xu, P. Crino, E.J. Arroyo, and D.H. Gutmann. (2001) Ezrin, radixin, and moesin are components of Schwann cell microvilli. J Neurosci Res. 65:150–64.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, S.S., Y.T. Xu, P.G. Bannerman, D.L. Sherman, and P.J. Brophy. (1995) Periaxin expression in myelinating Schwann cells: modulation by axon- glial interactions and polarized localization during development. Development. 121:4265–73.

    PubMed  CAS  Google Scholar 

  • Schnapp, B., and E. Mugnaini. (1975) The myelin sheath. Electron microscopic studies with thin section & freeze-fracture. In Golgi Centennial Symposium Proceedings. Raven Press, Inc., New York. 209–230.

    Google Scholar 

  • Shimoni, E., and M. Muller. (1998) On optimizing high-pressure freezing: from heat transfer theory to a new microbiopsy device. J Microsc. 192:236–47.

    Article  PubMed  CAS  Google Scholar 

  • Shoop, R.D., E. Esquenazi, N. Yamada, M.H. Ellisman, and D.K. Berg. (2002) Ultrastructure of a somatic spine mat for nicotinic signaling in neurons. J Neurosci. 22:748–56.

    PubMed  CAS  Google Scholar 

  • Shrager, P. (1989) Sodium channels in single demyelinated mammalian axons. Brain Res. 483:149–54.

    Article  PubMed  CAS  Google Scholar 

  • Sima, A.A. (1993) Diabetic neuropathy—the presence and future of a common but silent disorder. Mod Pathol. 6:399–401.

    PubMed  CAS  Google Scholar 

  • Soto, G.E., S.J. Young, M.E. Martone, T.J. Deerinck, S. Lamont, B.O. Carragher, K. Hama, and M.H. Ellisman. (1994) Serial section electron tomography: a method for three-dimensional reconstruction of large structures. Neuroimage. 1:230–43.

    Article  PubMed  CAS  Google Scholar 

  • Stiles, J.R., and T.M. Bartol. (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. In Computational Neuroscience: Realistic Modeling for Experimentalists. E. De Schutter, editor. CRC Press.

  • Stiles, J.R., T.M. Bartol, M.M. Salpeter, E.E. Salpeter, and T.J. Sejnowski. (2001) Synaptic variability: new insights from reconstructions and Monte Carlo simulations with MCell. In Synapses. W.M. Cowan, T.C. Sudhof, and C.F. Stevens, editors. Johns Hopkins University Press.

  • Sward, C., C.H. Berthold, I. Nilsson-Remahl, and M. Rydmark. (1995) Axonal constriction at Ranvier’s node increases during development. Neurosci Lett. 190:159–62.

    Article  PubMed  CAS  Google Scholar 

  • Tait, S., F. Gunn-Moore, J.M. Collinson, J. Huang, C. Lubetzki, L. Pedraza, D.L. Sherman, D.R. Colman, and P.J. Brophy. (2000) An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axo-glial junction. J Cell Biol. 150:657–66.

    Article  PubMed  CAS  Google Scholar 

  • Trapp, B.D., S.B. Andrews, A. Wong, M. O’Connell, and J.W. Griffin. (1989) Co-localization of the myelin-associated glycoprotein and the microfilament components, F-actin and spectrin, in Schwann cells of myelinated nerve fibres. J Neurocytol. 18:47–60.

    Article  PubMed  CAS  Google Scholar 

  • Tsukita, S., M. Furuse, and M. Itoh. (1999) Structural and signalling molecules come together at tight junctions. Curr Opin Cell Biol. 11:628–33.

    Article  PubMed  CAS  Google Scholar 

  • Vabnick, I., S.D. Novakovic, S.R. Levinson, M. Schachner, and P. Shrager. (1996) The clustering of axonal sodium channels during development of the peripheral nervous system. J Neurosci. 16:4914–22.

    PubMed  CAS  Google Scholar 

  • Vabnick, I., and P. Shrager. (1998) Ion channel redistribution and function during development of the myelinated axon. J Neurobiol. 37:80–96.

    Article  PubMed  CAS  Google Scholar 

  • Venken, K., J. Meuleman, J. Irobi, C. Ceuterick, R. Martini, P. De Jonghe, and V. Timmerman. (2001) Caspr1/Paranodin/Neurexin IV is most likely not a common disease- causing gene for inherited peripheral neuropathies. Neuroreport. 12:2609–14.

    Article  PubMed  CAS  Google Scholar 

  • Waxman, S.G., J.A. Black, P.K. Stys, and B.R. Ransom. (1992) Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve. Brain Res. 574:105–19.

    Article  PubMed  CAS  Google Scholar 

  • Waxman, S.G., and J.M. Ritchie. (1993) Molecular dissection of the myelinated axon. Ann Neurol. 33:121–36.

    Article  PubMed  CAS  Google Scholar 

  • Webster, H.D. (1971) The geometry of peripheral myelin sheaths during their formation and growth in rat sciatic nerves. J Cell Biol. 48:348–67.

    Article  PubMed  CAS  Google Scholar 

  • Webster, H.D., R. Martin, and M.F. O’Connell. (1973) The relationships between interphase Schwann cells and axons before myelination: a quantitative electron microscopic study. Dev Biol. 32:401–16.

    Article  PubMed  CAS  Google Scholar 

  • Wiley, C.A., and M.H. Ellisman. (1980) Rows of dimeric-particles within the axolemma and juxtaposed particles within glia, incorporated into a new model for the paranodal glial-axonal junction at the node of Ranvier. J Cell Biol. 84:261–80.

    Article  PubMed  CAS  Google Scholar 

  • Wiley-Livingston, C., and M.H. Ellisman. (1980) Development of axonal membrane specializations defines nodes of Ranvier and precedes Schwann cell myelin elaboration. Dev Biol. 79:334–55.

    Article  PubMed  CAS  Google Scholar 

  • Wiley-Livingston, C.A., and M.H. Ellisman. (1981) Myelination-dependent axonal membrane specializations demonstrated in insufficiently myelinated nerves of the dystrophic mouse. Brain Res. 224:55–67.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J.G., D.H. Jean, J.N. Whitaker, B.J. McLaughlin, and R.W. Albers. (1977) Immunocytochemical localization of the sodium, potassium activated ATPase in knifefish brain. J Neurocytol. 6:571–81.

    Article  PubMed  CAS  Google Scholar 

  • Wurtz, C.C., and M.H. Ellisman. (1986) Alterations in the ultrastructure of peripheral nodes of Ranvier associated with repetitive action potential propagation. J Neurosci. 6:3133–43.

    PubMed  CAS  Google Scholar 

  • Yamamoto, K., A.C. Merry, and A.A. Sima. (1996) An orderly development of paranodal axoglial junctions and bracelets of Nageotte in the rat sural nerve. Brain Res Dev Brain Res. 96:36–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gina E. Sosinsky or Mark H. Ellisman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sosinsky, G.E., Deerinck, T.J., Greco, R. et al. Development of a model for microphysiological simulations. Neuroinform 3, 133–162 (2005). https://doi.org/10.1385/NI:3:2:133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:3:2:133

Index Entries

Navigation