Skip to main content
Log in

Physiological and biochemical principles underlying volume-targeted therapy—The “lund concept”

  • Opinions And Arguments
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

The optimal therapy of sustained increase in intracranial pressure (ICP) remains controversial. The volume-targeted therapy (“Lund concept”) discussed in this article focuses on the physiological volume regulation of the intracranial compartments. The balance between effective transcapillary hydrostatic and osmotic pressures constitutes the driving force for transcapillary fluid exchange. The low permeability for sodium and chloride combined with the high crystalloid osmotic pressure (approximately 5700 mmHg) on both sides of the blood-brain barrier (BBB) counteracts fluid exchange across the intact BBB. Additionally, variations in systemic blood pressure generally are not transmitted to these capillaries because cerebral intracapillary hydrostatic pressure (and blood flow) is physiologically tightly autoregulated.

Under pathophysiological conditions, the BBB may be partially disrupted. Transcapillary water exchange is then determined by the differences in hydrostatic and colloid osmotic pressure between the intra- and extracapillary compartments. Pressure autoregulation of cerebral blood flow is likely to be impaired in these conditions. A high cerebral perfusion pressure accordingly increases intracapillary hydrostatic pressure and leads to increased intracerebral water content and an increase in ICP.

The volume-targeted “Lund concept” has been evaluated in experimental and clinical studies to examine the physiological and biochemical (utilizing intracerebral microdialysis) effects, and the clinical experiences have been favorable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bullock R, Chesnut RM, Clifton G, et al. Guidelines for the management of severe head injury. Eur J Emerg Med 1996;3:109–127.

    Article  PubMed  CAS  Google Scholar 

  2. Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg 1995;83:949–962.

    PubMed  CAS  Google Scholar 

  3. Rockhoff MA, Marshall LF, Shapiro HM. High-dose barbiturate therapy in humans: a clinical review of 60 patients. Ann Neurol 1979;6:194–199.

    Article  Google Scholar 

  4. Robertson CS, Valadka AB, Hannay J, et al. Prevention of secondary ischemic insults after severe head injury. Crit Care Med 1999;27:2086–2095.

    Article  PubMed  CAS  Google Scholar 

  5. Rosner MJ, Becker DP. Origin and evolution of plateau waves. Experimental observations and a theoretical model. J Neurosurg 1984;60:312–324.

    PubMed  CAS  Google Scholar 

  6. Grände PO, Asgeirsson B, Nordström CH. Volume targeted therapy of increased intracranial pressure: the Lund concept unifies surgical and non-surgical treatments. Acta Anaesthesiol Scand 2002;46:929–941.

    Article  PubMed  Google Scholar 

  7. Fenstermacher JD. Volume regulation of the central nervous system. In: Staub NC, Taylor AE, eds. Edema, New York: Raven Press, 1984, pp. 383–404.

    Google Scholar 

  8. Staverman AJ. The theory of measurement of osmotic pressure. Rec Trav Chim 1951;70:344–352.

    Article  CAS  Google Scholar 

  9. Bradbury MW, Cserr HF, Westrop RJ. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 1981;240:F329-F336.

    PubMed  CAS  Google Scholar 

  10. Cserr HF, Harling-Berg CJ, Knopf PM. Drainage of brain extracellular fluid intoblood and deep cervical lymph and its immunological significance. Brain Pathol 1992;2:269–276.

    PubMed  CAS  Google Scholar 

  11. Cserr HF, Knopf PM. Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 1992;13:507–512.

    Article  PubMed  CAS  Google Scholar 

  12. Patlak CS, Fenstermacher JD. Measurements of dog blood-brain transfer constants by ventriculocisternal perfusion. Am J Physiol 1975;229:877–884.

    PubMed  CAS  Google Scholar 

  13. Rosenberg GA, Kyner WT. Gray and white matter brain-blood transfer constants by steady-state tissue clearance in cat. Brain Res 1980;193:59–66.

    Article  PubMed  CAS  Google Scholar 

  14. Rosenberg GA, Kyner WT, Estrada E. Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am J Physiol 1980;238:F42-F48.

    PubMed  CAS  Google Scholar 

  15. Lux WE, Fenstermacher JD. Cerebrospinal fluid formation in ventricles and spinal subarachnoid space of the rhesus monkey. J Neurosurg 1975;42:674–678.

    PubMed  Google Scholar 

  16. Kessler JA, Fenstermacher JD, Owens ES. Spinal subarachnoid perfusion of rhesus monkeys. Am J Physiol 1976;230:614–618.

    PubMed  CAS  Google Scholar 

  17. Reulen HJ, Graham R, Spatz M, Klatzo I. Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J Neurosurg 1977;46:24–35.

    PubMed  CAS  Google Scholar 

  18. Siesjö BK. Brain Energy Metabolism. Chichester, New York, Brisbane, Toronto: John Wiley, 1978.

    Google Scholar 

  19. Folkow B, Neil E. Circulation. London: Oxford University Press, 1971.

    Google Scholar 

  20. Järhult J, Mellander S. Autoregulation of capillary hydrostatic pressure in skeletal muscle during regional hypo- and hypertension. Acta Physiol Scand 1974;91:32–41.

    PubMed  Google Scholar 

  21. Strandgaard S, Paulson O, Cerebral autoregulation. Stroke 1984;15:413–416.

    PubMed  CAS  Google Scholar 

  22. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev 1990;2:161–192.

    PubMed  CAS  Google Scholar 

  23. Rise IR, Kirkeby OJ. Effect of reduced cerebral perfusion pressure on cerebral blood flow following inhibition of nitric oxide synthesis. J Neurosurg 1998;89:448–453.

    PubMed  CAS  Google Scholar 

  24. Kajita Y, Takayasu M, Dietrich HH, et al. Possible role of nitric oxide in autoregulatory response in rat intracerebral arterioles. Neurosurg 1998;42:834–841.

    Article  CAS  Google Scholar 

  25. Thompson BG, Pluta RM, Girton ME, et al. Nitric oxide mediation of chemoregulation but not autoregulation of cerebral blood flow in primates. J Neurosurg 1996;84:71–78.

    PubMed  CAS  Google Scholar 

  26. Edvinsson L, MacKenzie ET, McCulloch J. Cerebral blood flow and metabolism. New York: Raven Press, 1993.

    Google Scholar 

  27. Albrecht RF, Miletich DJ, Ruttle M. Cerebral effects of extended hyperventilation in unanaesthetized goats. Stroke 1987;18:649–654.

    PubMed  CAS  Google Scholar 

  28. Cold GE, Taagehöj Jensen F, Malmros R. The effects of PaCO2 reduction on regional cerebral blood flow in the acute phase of brain injury. Acta Anaesthesiol Scand 1977;21:359–367.

    PubMed  CAS  Google Scholar 

  29. Nwaigwe CI, Roche MA, Grinberg O, et al. Effect of hyperventilation on brain tissue oxygenation and cerebrovenous PO2 in rats. Brain Res 2000;868:150–156.

    Article  PubMed  CAS  Google Scholar 

  30. Muizelaar JP, Marmarou A, Ward JD, et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg 199;64:81–88.

  31. Imberti R, Bellinzona G, Langer M. Cerebral tissue PO2 and SjvO2 changes during moderate hyperventilation in patients with severe traumatic brain injury. J Neurosurg 2002;96:97–102.

    PubMed  Google Scholar 

  32. Diringer MN, Videen TO, Yundt K, et al. Regional cerebrovascular and metabolic effects of hyperventilation after severe traumatic brain injury. J Neurosurg 2002;96:103–108.

    PubMed  Google Scholar 

  33. Messeter K, Nordström CH, Sundbörg G, et al. Cerebral hemodynamics in patients with acute severe head trauma. J Neurosurg 1986;64:231–237.

    PubMed  CAS  Google Scholar 

  34. Schalén W, Messeter K, Nordström CH. Cerebral vasoreactivity and the prediction of outcome in severe traumatic brain lesions. Acta Anaesthesiol Scand 1991;35:113–122.

    PubMed  Google Scholar 

  35. Nordström CH, Messeter K, Sundbärg G, et al. Cerebral blood flow, vasoreactivity, and oxygen consumption during barbiturate therapy in severe traumatic brain lesions. J Neurosurg 1988;68:424–431.

    Article  PubMed  Google Scholar 

  36. Cold GE. Measurements of CO2 reactivity and barbiturate reactivity in patients with severe head injury. Acta Neurochir (Wien) 1989;98:153–163.

    Article  CAS  Google Scholar 

  37. Schalén W, Messeter K, Nordström CH. Complications and side effects during thiopentone therapy in patients with severe head injuries. Acta Anaesthesiol Scand 1992;36:369–377.

    PubMed  Google Scholar 

  38. Kelly DF, Goodale DB, Williams J, et al. Propofol in the treatment of moderate and severe head injury: a randomized, prospective double-blinded pilot trial. J Neurosurg 1999;90:1042–1052.

    PubMed  CAS  Google Scholar 

  39. Cremer OL, Moons KG, Bouman EA, et al. Long-term propofol infusion and cardiac failure in adult head-injured patients. Lancet 2001;357:117–118.

    Article  PubMed  CAS  Google Scholar 

  40. Cannon ML, Glazier SS, Bauman LA. Metabolic acidosis, rhabdomyolysis, and cardiovascular collapse after prolonged propofol infusion. J Neurosurg 2001;95:1053–1056.

    PubMed  CAS  Google Scholar 

  41. Kelly DF. Editorial. Propofol-infusion syndrome. J Neurosurg 2001;95:925–926.

    PubMed  CAS  Google Scholar 

  42. Asgeirsson B, Grände PO. Effects of arterial and venous pressure alterations on transcapillary fluid exchange during raised tissue pressure. Intensive Care Med 1994;20:567–572.

    Article  PubMed  CAS  Google Scholar 

  43. Pang Q, Lu X, Gregersen H, von Oettingen G, et al. Biomechanical properties of porcine bridging veins with reference to the zero-stress state. J Vasc Res 2001;38:83–90.

    Article  PubMed  CAS  Google Scholar 

  44. Grände PO, Asgeirsson B, Nordström CH. Physiological principles for volume regulation of a tissue enclosed in a rigid shell with application to the injured brain. J Trauma 1997;42:S23-S31.

    Article  PubMed  Google Scholar 

  45. Beaumont A, Marmarou A, Hayasaki K, et al. The permissive nature of blood brain barrier (BBB) opening in edema formation following traumatic brain injury. Acta Neurochir Suppl. 2000;76:125–129.

    PubMed  CAS  Google Scholar 

  46. Ito U, Ohno K, Nakamura R, et al. Brain edema during ishcemia and after restoration of blood flow. Measurement of water, sodium potassium content and plasma protein permeability. Stroke 1979;10:542–547.

    PubMed  CAS  Google Scholar 

  47. Starling EH. On the absorption of fluid from connective tissue spaces. J Physiol 1896;19:312–326.

    PubMed  CAS  Google Scholar 

  48. Michel CC. Starling: the formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years. Exp Physiol 1997;82:1–30.

    PubMed  CAS  Google Scholar 

  49. Kongstad L, Grände PO. The role of arterial and venous pressure for volume regulation of an organ enclosed in a rigid compartment with application to the injured brain. Acta Anaesthesiol Scand 1999;43:501–508.

    Article  PubMed  CAS  Google Scholar 

  50. Kongstad L, Grände PO. Arterial hypertension increases intracranial pressure in cat after opening of the blood-brain barrier. J Trauma 2001;51:490–496.

    Article  PubMed  CAS  Google Scholar 

  51. Oertel M, Kelly DF, Lee JH, et al. Efficacy of hyperventilation, blood pressure elevation, and metabolic suppression therapy in controlling intracranial pressure after head injury. J Neurosurg 2002;97:1045–1053.

    PubMed  Google Scholar 

  52. Monro A. Observations on the structure and function of the nervous system. Edinburgh: printed for William Creek, 1783.

    Google Scholar 

  53. Kellie G. Some reflections on the pathology of the brain. Edinb Med Chir Soc Trans 1824;1:84–169.

    Google Scholar 

  54. Mendelow AD, Karmi MZ, Paul KS, et al. Extradural haematoma: effect of delayed treatment. Br Med J 1979;1:1240–1242.

    Article  PubMed  CAS  Google Scholar 

  55. Seelig JM, Becker DP, Miller JD, et al. Traumatic acute subdural hematoma: major mortality reduction in comatose patients treated within four hours. N Engl J Med 1981;304:1511–1518.

    Article  PubMed  CAS  Google Scholar 

  56. Brain Trauma Foundation, American Association of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care. Guidelines for the management of severe head injury. J Neurotrauma 1996;13:641–734.

    Google Scholar 

  57. Guerra WKW, Gaab MR, Dietz H, et al. Surgical decompression for traumatic brain swelling: indications and results. J Neurosurg 1999;90:187–196.

    Article  PubMed  CAS  Google Scholar 

  58. Guerra WKW, Piek J, Gaab MR. Decompressive craniectomy to treat intracranial hypertension in head injured patients. Intensive Care Med 1999;25:1327–1329.

    Article  PubMed  CAS  Google Scholar 

  59. Asgeirsson B, Grände PO, Nordström CH. A new therapy of posttrauma brain oedema based on haemodynamic principles for brain volume regulation. Intensive Care Med 1994;20:260–267.

    Article  PubMed  CAS  Google Scholar 

  60. Kaufmann AM, Cardoso ER. Aggravation of vasogenic cerebral edema by multiple-dose mannitol. J Neurosurg 1992;77:584–589.

    Article  PubMed  CAS  Google Scholar 

  61. Muizelaar JP, Lutz HA III, Becker DP. Effect of mannitol on ICP and CBF and correlation with pressure autoregulation in severely head-injured patients. J Neurosurg 1984;61:700–706.

    PubMed  CAS  Google Scholar 

  62. Suzuki J, Imaizumi S, Kayama T, et al. Chemiluminescence in hypoxicbrain-the second report: cerebral protective effect of mannitol, vitamin E and glucocorticoid. Stroke 1985;16:695–700.

    PubMed  CAS  Google Scholar 

  63. Bereczki D, Liu M, do Prado GF, et al. Cochrane report. A systematic revies of mannitol therapy for acute ischemic stroke and cerebral parenchymal hemorrhage. Stroke 2000;31:2719–2722.

    PubMed  CAS  Google Scholar 

  64. Bacher A, Wei J, Grafe MR, et al. Serial determinations of cerebral water content by magnetic resonance imaging after an infusion of hypertonic saline. Crit Care Med 1998;26:108–114.

    Article  PubMed  CAS  Google Scholar 

  65. Matsui T, Sinyama H, Asano T. Beneficial effect of prolonged administration of albumin on ischemic cerebral edema and infarction after occlusion of middle cerebral artery in rats. Neurosurgery 1993;33:293–300.

    Article  PubMed  CAS  Google Scholar 

  66. Tomita H, Ito U, Masoka H, et al. High colloid oncotic therapy for contusional brain edema. Acta Neurochir Suppl (Wien) 1994;60:547–549.

    CAS  Google Scholar 

  67. Tone O, Ito U, Tomita H, et al. High colloid oncotic therapy for brain edema with cerebral hemorrhage. Acta Neurochir Suppl (Wien) 1994;60:568–570.

    CAS  Google Scholar 

  68. Hakamata Y, Ito U, Hanyu S, et al. Long-term high-colloid oncotic therapy for ischemic brain edem in gerbils. Stroke 1995;26:2149–2153.

    PubMed  CAS  Google Scholar 

  69. Chorney I, Bsorai R, Artru AA, et al. Albumin or hetastarch improves neurological outcome and decreases volume of brain tissue necrosis but not brain edema following closed-head trauma in rats. J Neurosurg Anesthesiol 1999; 11: 273–281.

    Article  Google Scholar 

  70. Drummond JC, Patel PM, Cole DJ, et al. The effect of the reduction of colloid oncotic pressure, with and without reduction of osmolality, on post-traumatic cerebral edema. Anesthesiology 1998;88:993–1002.

    Article  PubMed  CAS  Google Scholar 

  71. Belayev L, Liu Y, Zhao W, et al. Human albumin therapy of acute ischemic stroke: marked neuroprotective efficacy at moderate doses and with broad therapeutic window. Stroke 2001;32:553–560.

    PubMed  CAS  Google Scholar 

  72. Moss E. Editorial. Cerebral blood flow during induced hypotensions. Br J Anaesth 1995;74:635–637.

    Article  PubMed  CAS  Google Scholar 

  73. Asgeirsson B, Grände PO, Nordström CH, et al. Effects of hypotensive treatment with α2-agonist and β1-antagonist on cerebral hemodynamics in severe head injury. Acta Anaesthesiol Scand 1995;39:347–351.

    PubMed  CAS  Google Scholar 

  74. Dearden NM, Gibson JS, McDowall DG, et al. Effect of high-dose dexamethasone on outcome from severe head injury. J Neurosurg 1986;64:81–88.

    PubMed  CAS  Google Scholar 

  75. Qizilbash N, Lewington SL, Lopez-Arrieta JM. Corticosteroids for acute ischaemic stroke. Cochrane Database Syst Rev 2000;2:CD000064.

    Google Scholar 

  76. Grände PO, Möller AD, Nordström CH, et al. Low-dose prostacyclin in treatment of severe brain trauma evaluated with microdialysis and jugular bulb oxygen measurements. Acta Anaesthesiol Scand 2000;44:886–894.

    Article  PubMed  Google Scholar 

  77. Bentzer P, Venturoli D, Carlsson O, et al. Low-dose prostacyclin improves cortical perfusion following experimental brain injury in the rat. J Neurotrauma 2003;20:447–461.

    Article  PubMed  Google Scholar 

  78. Naredi S, Olivercrona M, Lindgren C, et al. An outcome study of severe traumatic head injury using the “Lund therapy” with low-dose prostacyclin. Acta Anaesthesiol Scand 2001;45:402–406.

    Article  PubMed  CAS  Google Scholar 

  79. Jensen K, Öhrström J, Cold GE, et al. The effects of indomethacin on intracranial pressure, cerebral blood flow and cerebral metabolism in patients with severe head injury and intracranial hypertension. Acta Neurochir (Wien) 1991;108:116–121.

    Article  CAS  Google Scholar 

  80. Nilsson F, Björkman S, Rosén I, et al. Cerebral vasoconstriction by indomethacin in intracranial hypertension. Anesthesiology 1995;83:1283–1292.

    Article  PubMed  CAS  Google Scholar 

  81. Mellander S, Nordenfelt I. Comparative effects of dihydroergotamine and noradrenaline on resistance, exchange and capacitance functions in the peripheral circulation. Clin Science 1970;39:183–201.

    CAS  Google Scholar 

  82. Grände PO. The effect of dihydroergotamine in patients with head injury and raised intracranial pressure. Intensive Care Med 1989;15:523–527.

    Article  PubMed  Google Scholar 

  83. Nilsson F, Messeter K, Grände PO, et al. Effects of dihydroergotamine on cerebral circulation during experimental intracranial hypertension. Acta Anaesthesiol Scand 1995;39:916–921.

    PubMed  CAS  Google Scholar 

  84. Asgeirsson B, Grände PO, Nordström CH, et al. Cerebral hemodynamic effects of dihydroergotamine in patients with intracranial hypertension after severe head injury. Acta Anaesthesiol Scand 1995;39:922–930.

    Article  PubMed  CAS  Google Scholar 

  85. Nilsson F, Nilsson T, Edvinsson L, et al. Effects of dihydroergotamine and sumatriptan on isolated human cerebral and peripheral arteries and veins. Acta Anaesthesiol Scand 1997;41:1257–1262.

    PubMed  CAS  Google Scholar 

  86. Gupta VL, Mjorndal TO. Gangrene and renal failure caused by dihydroergotamine used to treat raised intracranial pressure following head trauma. Acta Anaesthesiol Scand 1996;40:389–391.

    PubMed  CAS  Google Scholar 

  87. Grände PO, Nordström CH. Dihydroergotamine in the treatment of head injury — risk of gangrene and renal failure. Acta Anaesthesiol Scand 1996;40:1255–1257.

    PubMed  Google Scholar 

  88. Nilsson F, Nilsson T, Edvinsson L, et al. Sumatriptan-induced cerebral vasoconstriction as treatment of experimental intracranial hypertension. Acta Anaesthesiol Scand 1996;40:612–620.

    Article  PubMed  CAS  Google Scholar 

  89. Reinstrup P, Ståhl N, Hallström Å, et al. Intracerebral microdialysis in clinical practice. Normal values and variations during anaesthesia and neurosurgical operations. Neurosurgery 2000;47:701–710.

    Article  PubMed  CAS  Google Scholar 

  90. Ståhl N, Mellergård P, Hallström Å, et al. Intracerebral microdialysis and bedside biochemical analysis in patients with fatal traumatic brain lesions. Acta Anaesthesiol Scand 2001;45:977–985.

    Article  PubMed  Google Scholar 

  91. Ståhl N, Ungerstedt U, Nordström CH. Brain energy metabolism during controlled reduction of cerebral perfusion pressure in severe head injuries. Intensive Care Med 2001;27:1215–1223.

    Article  PubMed  Google Scholar 

  92. Ståhl N, Schalén W, Ungerstedt U, et al. Bedside biochemical monitoring of the penumbra zone surrounding an evacuated acute subdural haematoma. Acta Neurol Scand 2003;108: 211–215.

    Article  PubMed  Google Scholar 

  93. Nordström CH, Reinstrup P, Xu W, et al. Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology 2003;98:809–814.

    Article  PubMed  Google Scholar 

  94. Gisvold SE. The Lund concept for treatment of head injuries—faith or science? Acta Anaesthesiol Scand 2001;45:402–406.

    Article  Google Scholar 

  95. Brain Trauma Foundation. Guidelines for management of traumatic brain injury. New York: Brain Trauma Foundation, 2000, www.braintrauma.org

    Google Scholar 

  96. Slavic RS, Rhoney DH. Pharmacological management of severe traumatic brain injury: an evidence-based review. J Inf Pharmacother 2000, www.informedpharmacotherapy.com

  97. Robertson CS. Management of cerebral perfusion pressure after traumatic brain injury. Anesthesiology 2001;95:1513–1517.

    Article  PubMed  CAS  Google Scholar 

  98. Eker C, Asgeirsson B, Grånde PO, et al. Improved outcome after severe head injury with a new therapy based on principles for brain volume regulation and improved microcirculation. Critical Care Medicine 1998;26:1881–1886.

    PubMed  CAS  Google Scholar 

  99. Naredi S, Edén E, Zäll S, et al. A standardized neurosurgical/neurointensive therapy directed toward vasogenic edema after severe traumatic brain injury: clinical results. Intensive Care Med 1998;24:446–451.

    Article  PubMed  CAS  Google Scholar 

  100. Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet 1975;1:480–484.

    Article  PubMed  CAS  Google Scholar 

  101. Eker C, Schalén W, Asgeirsson B, et al. Reduced mortality after severe head injury will increase the demands for rehabilitation services. Brain Injury 2000;14:605–619.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Henrik Nordström MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordström, CH. Physiological and biochemical principles underlying volume-targeted therapy—The “lund concept”. Neurocrit Care 2, 83–95 (2005). https://doi.org/10.1385/NCC:2:1:083

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NCC:2:1:083

Key Words

Navigation