Skip to main content
Log in

Expression of MDR1/P-glycoprotein, the multidrug resistance protein MRP, and the lung-resistance protein LRP in multiple myeloma

  • Original Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the incidence of three genes associated with multidrug resistance (MDR) in multiple myeloma in relation to treatment status. MDR1/Pgp (P-glycoprotein) expression was detected in 41% of 93 myeloma samples. Generally, the incidence of MDR1/Pgp expression was higher in pretreated samples, and treatments with doxorubicin and/or vincristine were more effective in MDR1/Pgp expression than with alkylating agents. A significant association was observed between MDR1/Pgp-positiveness and the ability of verapmil to increase doxorubicin sensitivity, suggesting functional relevance of MDR1/Pgp expression. MRP (multidrug resistance protein) expression was detected in 20.5% of 88 myeloma samples, in 26% at the mRNA level analyzed by quantitative reverse transriptase-polymerase chain reaction, and in only 3 of 79 samples by immunohistochemistry. LRP (lung-resistance protein) protein expression was observed in 12.5% of 72 myeloma samples. MRP and LRP expression was similar in samples with and without prior therapy. Approximately 80% of the myeloma samples with detectable mRNA expression of MDR1 and MRP exhibited low expression levels corresponding to <10% of the Pgp- and MRP-overexpressing multidrug-resistant human myeloma cell lines 8226/Dox6 and 8226/DOXint40c, respectively. Some normal bone marrow samples showed higher levels of MRP mRNA as compared to myeloma specimens, whereas MDR1 mRNA expression in normal bone marrow was much lower (≤ 5%) than that in 8226/Dox6. These findings indicate a requirement to develop single-cell assays for MRP detection in multiple myeloma that are more sensitive than immunohistochemistry and might be useful to evaluate the incidence of genes associated with MDR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sonneveld, P. and List, A.F. (2001) Chemotherapy resistance in acute myeloid leukaemia. Best Pract. Res. Clin. Haematol. 14:211–233.

    Article  PubMed  CAS  Google Scholar 

  2. Wuchter, C., et al. (2001) Clinical significance of P-glycoprotein expression and function for response to induction chemotherapy, relapse rate and overall survival in acute leukemia. Haematologica 85:711–721.

    Google Scholar 

  3. Litman, T., Druley, T.E., Stein, W.D. and Bates, S.E. (2001) From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell. Mol. Life Sci. 58:931–959.

    Article  PubMed  CAS  Google Scholar 

  4. Jones, P.M. and George, A.M. (1998) A new structural model for P-glycoprotein. J. Membr. Biol. 166:133–147.

    Article  PubMed  CAS  Google Scholar 

  5. Schrenk, D., et al. (2001) Up-regulation of transporters of the MRP family by drugs and toxins. Toxicol. Lett. 120:51–57.

    Article  PubMed  CAS  Google Scholar 

  6. Hatanaka, H., et al. (2001) Modulation of multidrug resistance in a cancer cell line by anti-multidrug resistance-associated protein (MRP) ribozyme. Anticancer Res. 21:879–885.

    PubMed  CAS  Google Scholar 

  7. Wijnholds, J., et al. (1997) Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat. Med. 3:1275–1279.

    Article  PubMed  CAS  Google Scholar 

  8. Mao, Y., et al. (1999). Mutations of human topoisomerase II alpha affecting multidrug resistance and sensitivity. Biochemistry 38:10,793–10,800.

    CAS  Google Scholar 

  9. Ren, X.Q., et al. (2001) Glutathione-dependent binding of a photoaffinity analog of agosterol A to the C-terminal half of human multidrug resistance protein. J. Biol. Chem. 276:23,197–23,232.

    CAS  Google Scholar 

  10. Scheffer, G.L., Schroeijers, A.B., Izquierdo, M.A., Wiemer, E.A. and Scheper, R.J. (2001). Lung resistance-related protein/major vault protein and vaults in multidrug-resistant cancer. Curr. Opin. Oncol. 12:550–556.

    Article  Google Scholar 

  11. Dorr, R., et al. (2001). Phase I/II study of the P-glycoprotein modulator PSC 833 in patients with acute myeloid leukemia. J. Clin. Oncol. 19:1589–1599.

    PubMed  CAS  Google Scholar 

  12. Dahl, G.V., et al. (2001) Mitoxantrone, etoposide, and cyclosporine therapy in pediatric patients with recurrent or refractory acute myeloid leukemia. J. Clin. Oncol. 18:1867–1875.

    Google Scholar 

  13. Nooter, K., Burger, H. and Stoter, G. (1996). Multidrug resistance-associated protein (MRP) in haematological malignancies. Leuk. Lymphoma 20:381–387.

    PubMed  CAS  Google Scholar 

  14. Norris, M.D., et al. (1996). Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuroblastoma. N. Engl. J. Med. 334:231–238.

    Article  PubMed  CAS  Google Scholar 

  15. Izquierdo, M.A., et al. (1995). Drug resistance-associated marker Lrp of prediction of response to chemotherapy and prognoses in advanced ovarian carcinoma. J. Natl. Cancer. Inst. 87:1230–1237.

    Article  PubMed  CAS  Google Scholar 

  16. List, A.F., et al. (1996). Overexpression of the major vault transporter protein lung-resistance protein predicts treatment outcome in acute myeloid leukemia. Blood 87:2464–2469.

    PubMed  CAS  Google Scholar 

  17. Grogan, T.M., et al. (1993). P-Glycoprotein expression in human plasma cell myeloma: correlation with prior chemotherapy. Blood. 81:490–495.

    PubMed  CAS  Google Scholar 

  18. Sonneveld, P., et al. (1993). Analysis of multidrug-resistance (MDR-1) glycoprotein and CD56 expression to separate monoclonal gammopathy from multiple myeloma. Br. J. Haematol. 83:63–67.

    PubMed  CAS  Google Scholar 

  19. Ishikawa, H., et al. (1993) Expressions of DNA topoisomerase I and II gene and the genes possibly related to drug resistance in human myeloma cells. Br. J. Haematol. 83:68–74.

    PubMed  CAS  Google Scholar 

  20. Linsenmeyer, M.E., et al. (1992) Levels of expression of the mdr1 gene and glutathione S-transferase genes 2 and 3 and response to chemotherapy in multiple myeloma. Br. J. Cancer 65:471–475.

    PubMed  CAS  Google Scholar 

  21. Futscher, B.W., Blake, L.L., Gerlach, J.H., Grogan, T.M. and Dalton, W.S. (1993). Quantitative polymerase chain reaction analysis of mdr1 mRNA in multiple myeloma cell lines and clinical specimens. Anal. Biochem. 213:414–421.

    Article  PubMed  CAS  Google Scholar 

  22. Salmon, S.E., Grogan, T.M., Miller, T., Scheper, R. and Dalton, W.S. (1989). Prediction of doxorubicin resistance in vitro in myeloma, lymphoma, and breast cancer by P-glycoprotein staining. J. Natl. Cancer Inst. 81:696–701.

    Article  PubMed  CAS  Google Scholar 

  23. Cornelissen, J.J., et al. (1994). MDR-1 expression and response to vincristine, doxorubicin, and dexamethasone chemotherapy in multiple myeloma refractory to alkylating agents. J. Clin. Oncol. 12:115–119.

    PubMed  CAS  Google Scholar 

  24. Salmon, S.E., et al. (1991). Multidrug-resistant myeloma: laboratory and clinical effects of verapamil as a chemosensitizer. Blood 78:44–50.

    PubMed  CAS  Google Scholar 

  25. Sonneveld, P., et al. (1992). Modulation of multidrug-resistant multiple myeloma by cyclosporin. Lancet 340:255–259.

    Article  PubMed  CAS  Google Scholar 

  26. Sonneveld, P., Schoester, M. and de Leeuw, K. (1994). Clinical modulation of multidrug resistance in multiple myeloma: effect of cyclosporine on resistant tumor cells. J. Clin. Oncol. 12:1584–1591.

    PubMed  CAS  Google Scholar 

  27. Weber, D., Dimopoulos, M., Sinicrope, F. and Alexanian, R. (1995). VAD-cyclosporine therapy for VAD-resistant multiple myeloma. Leuk. Lymphoma 19:159–163.

    PubMed  CAS  Google Scholar 

  28. Chronic Leukemia-Myeloma Task Force, National Cancer Institute (1968), Proposed guidelines for protocol studies. II. Plasma cell myeloma. Cancer Chemother. Rep. 1:17–39.

    Google Scholar 

  29. Hellman, S. and Rosenberg, S.A., eds. (1993). Cancer, Principles & Practice of Oncology, Lippincott, Philadelphia, 1993.

    Google Scholar 

  30. Drach, D., et al. (1992). Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrug resistant phenotype. Blood 80:2729–2734.

    PubMed  CAS  Google Scholar 

  31. Dalton, W.S., Durie, B.G., Alberts, D.S., Gerlach, J.H. and Cress, A.E. (1986). Characterization of a new drug-resistant human myeloma cell line that expresses P-glycoprotein. Cancer Res. 46:5125–5130.

    PubMed  CAS  Google Scholar 

  32. Dalton, W.S., et al. (1989) Immunohistochemical detection and quantitation of P-glycoprotein in multiple drug-resistant human myeloma cells: association with level of drug resistance and drug accumulation. Blood 73: 747–752.

    PubMed  CAS  Google Scholar 

  33. Shao, Y., Wyler, B., Lehnert, M., Schneider, E. and Twentyman, P.R. (1994). RPMI 8226 human myeloma cells develop atypical multidrug resistance when mimicking clinical doxorubicin treatment in vitro. Proc. Am. Assoc. Cancer Res. 35:2158.

    Google Scholar 

  34. Shao, Y., de Giuli, R., Wyler, B. and Lehnert, M. (1995). Overexpression of MDR/P-glycoprotein and MRP but not LRP is mutually exclusive in multidrug resistant human myeloma cells selected with doxorubicin. Proc. Am. Assoc. Cancer Res. 36:2006.

    Google Scholar 

  35. Kuiper, C.M., et al. (1990). Drug transport variants without P-glycoprotein overexpression from a human squamous lung cell line after selection with doxorubicin. J. Cell Pharmacol. 1:35.

    CAS  Google Scholar 

  36. Chen, T.R. (1977). In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp. Cell Res. 104:255–262.

    Article  PubMed  CAS  Google Scholar 

  37. Chen, C.J., et al. (1986). Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47:381–389.

    Article  PubMed  CAS  Google Scholar 

  38. Nakajima-Iijima, S., Hamada, H., Reddy, P. and Kakunaga, T. (1985). Molecular structure of the human cytoplasmic beta-actin gene: interspecies homology of sequences in the introns. Proc. Natl. Acad. Sci. USA 82:6133–6137.

    Article  PubMed  CAS  Google Scholar 

  39. Scheper, R.J., et al. (1988). Monoclonal antibody JSB-1 detects a highly conserved epitope on the P-glycoprotein associated with multi-drug-resistance. Int. J. Cancer 42:389–394.

    Article  PubMed  CAS  Google Scholar 

  40. Flens, M.J., et al. (1994). Immunochemical detection of the multidrug resistance-associated protein MRP in human multidrug-resistant tumor cells by monoclonal antibodies. Cancer Res. 54:4557–4563.

    PubMed  CAS  Google Scholar 

  41. Scheper, R.J., et al. (1993). Overexpression of a M(r) 110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance. Cancer Res. 53:1475–1479.

    PubMed  CAS  Google Scholar 

  42. Hipfner, D.R., Gauldie, S.D., Deeley, R.G. and Cole, S.P. (1994). Detection of the M(r) 190,000 multidrug resistance protein, MRP, with monoclonal antibodies. Cancer Res. 54:5788–5792.

    PubMed  CAS  Google Scholar 

  43. Ichihashi, N. and Kitajima, Y. (2001). Chemotherapy induces or increases expression of multidrug resistance-associated protein in malignant melanoma cells. Br. J. Dermatol. 144:745–750.

    Article  PubMed  CAS  Google Scholar 

  44. Kang, Y.K., et al. (1995). Expression of mdr-1 in refractory lymphoma: quantitation by polymerase chain reaction and validation of the assay. Blood 86:1515–1524.

    PubMed  CAS  Google Scholar 

  45. Beck, W.T., et al. (1996). Methods to detect P-glycoprotein-associated multidrug resistance in patients’ tumors: consensus recommendations. Cancer Res. 56:3010–3020.

    PubMed  CAS  Google Scholar 

  46. Greipp, P.R., et al. (1993). Plasma cell labeling index and beta 2-microglobulin predict survival independent of thymidine kinase and C-reactive protein in multiple myeloma. Blood 81:3382–3387.

    PubMed  CAS  Google Scholar 

  47. Pasqualetti, P., Collacciani, A., Maccarone, C. and Casale, R. (1996). Prognostic factors in multiple myeloma: selection using Cox’s proportional hazard model. Biomed. Pharmacother. 50:29–35.

    Article  PubMed  CAS  Google Scholar 

  48. Horikoshi, T., et al. (1992). Quantitation of thymidylate synthase, dihydrofolate reductase, and DT-diaphorase gene expression in human tumors using the polymerase chain reaction. Cancer Res. 52:108–116.

    PubMed  CAS  Google Scholar 

  49. Harada, H., et al. (1993). Phenotypic difference of normal plasma cells from mature myeloma cells. Blood 81:2658–2663.

    PubMed  CAS  Google Scholar 

  50. Kawano, M.M., et al. (1993). Identification of immature and mature myeloma cells in the bone marrow of human myelomas. Blood 82:564–570.

    PubMed  CAS  Google Scholar 

  51. Goldmacher, V.S., et al. (1994). Anti-CD38-blocked ricin: an immunotoxin for the treatment of multiple myeloma. Blood 84:3017–3025.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Schwarzenbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarzenbach, H. Expression of MDR1/P-glycoprotein, the multidrug resistance protein MRP, and the lung-resistance protein LRP in multiple myeloma. Med Oncol 19, 87–104 (2002). https://doi.org/10.1385/MO:19:2:87

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MO:19:2:87

Key Words

Navigation