Skip to main content
Log in

CFTR transgene expression in primary ΔF508 epithelial cell cultures from human nasal polyps following gene transfer with cationic phosphonolipids

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Cystic fibrosis (CF) is the most common autosomal lethal recessive disorder in the Caucasian population. The major cause of mortality is lung disease, owing to the failure of a functional protein from the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Today, even though the knowledge about the CFTR genomic is extensive, no efficient treatment has been developed yet.

In this context, gene therapy represents a potential important advance on condition that it could develop efficient and safe transfection agents. Even though viral vectors have been used in most clinical trials owing to their high transfection efficiency, random integration and immunogenicity are still critical side effects. Consequently, all of these drawbacks brought forth the development of nonviral transfection systems. Although they engender few toxicity and immunogenicity problems, their low transfection efficiency is a hurdle that must be overcome. Over the past decade, we have developed an original family of monocationic lipids, cationic phosphonolipids, whose efficiency has been previously demonstrated both in vitro and in vivo.

In this report, we observe that a new cationic phosphonolipid (KLN 30) can lead to the restoration of the CFTR protein following the ex vivo transfection of epithelial cells issuing from a ΔF508 homozygous patient. The transgene expression and the cytotoxicity correlate with the charge ratio of the lipoplex. A kinetic study was performed, and a luminescent signal was detected until 35 d after transfection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Welsh, M. J., Tsui, L. C., Boat, T. F., and Beaudet, A. L. (1995) Cystic fibrosis. In The Metabolic and Molecular Bases of Inherited Disease (Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds.). McGraw Hill, New York, pp. 3799–3876.

    Google Scholar 

  2. Riordan, J. R., Rommens, J. M., Kerem, B., et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.

    Article  PubMed  CAS  Google Scholar 

  3. Pilewski, J. M. and Frizzell, R. A. (1999) Role of CFTR in airway disease. Physiol. Rev. 79, 215–255.

    Google Scholar 

  4. Smith, J. J., Travis, S. M., Greenberg, E. P., and Welsh, M. J. (1996) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85, 229–236.

    Article  PubMed  CAS  Google Scholar 

  5. Pierre Charneau, Unit d’Oncologie Virale, Institut Pasteur. (2000) Available at www.pasteur.fr. Accessed January 28, 2004.

  6. National Institutes of Health. Human gene Transfer Methods. Available at www.od.nih.gov/oba/rac/clinicaltrial.htm. Accessed January 28, 2004.

  7. Somia, N. and Verma, I. M. (2000) Gene therapy: trials and tribulations. Nat. Rev. Genet. 1, 91–99.

    Article  PubMed  CAS  Google Scholar 

  8. Baum, C., Dullmann, J., Li, Z., et al. (2003) Side effects of retroviral gene transfer into hematopoietic stem cells. Blood. 101, 2099–2114.

    Article  PubMed  CAS  Google Scholar 

  9. Zabner, J., Couture, L. A., Gregory, R. J., Graham, S. M., Smith, A. E., and Welsh, M. J. (1993) Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75, 207–216.

    Article  PubMed  CAS  Google Scholar 

  10. Hay, J. G., McElvaney, N. G., Herena, J., and Crystal, R. G. (1995) Modification of nasal epithelial potential differences of individuals with cystic fibrosis consequent to local administration of a normal CFTR cDNA adenovirus gene transfer vector. Hum. Gene Ther. 6, 1487–1496.

    PubMed  CAS  Google Scholar 

  11. Zabner, J., Ramsey, B. W., Meeker, D. P., et al. (1996) Repeat administration of an adenovirus vector encoding cystic fibrosis transmembrane conductance regulator to the nasal epithelium of patients with cystic fibrosis. J. Clin. Invest. 97, 1504–1511.

    PubMed  CAS  Google Scholar 

  12. Felgner, P. L., Gadek, T. R., Holm, M., et al. (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413–7417.

    Article  PubMed  CAS  Google Scholar 

  13. McLachlan, G., Davidson, D. J., Stevenson, B. J., et al. (1995) Evaluation in vitro and in vivo of cationic liposome-expression construct complexes for cystic fibrosis gene therapy. Gene Ther. 2, 614–622.

    PubMed  CAS  Google Scholar 

  14. Gill, D. R., Southern, K. W., Mofford, K. A., et al. (1997) A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 4, 199–209.

    Article  PubMed  CAS  Google Scholar 

  15. Porteous, D. J., Dorin, J. R., McLachlan, G., et al. (1997) Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 4, 210–218.

    Article  PubMed  CAS  Google Scholar 

  16. Floch, V., Audrezet, M. P., Guillaume, C., et al. (1998) Transgene expression kinetics after transfection with cationic phosphonolipids in hematopoietic non adherent cells. Biochim. Biophys. Acta. 1371, 53–70.

    Article  PubMed  CAS  Google Scholar 

  17. Floch, V., Loisel, S., Guenin, E., et al. (2000) Cation substitution in cationic phosphonolipids: a new concept to improve transfection activity and decrease cellular toxicity. J. Med. Chem. 43, 4617–4628.

    Article  PubMed  CAS  Google Scholar 

  18. Guillaume-Gable, C., Floch, V., Mercier, B., et al. (1998) Cationic phosphonolipids as nonviral gene transfer agents in the lungs of mice. Hum. Gene Ther. 9, 2309–2319.

    PubMed  CAS  Google Scholar 

  19. Delepine, P., Guillaume, C., Floch, V., et al. (2000) Cationic phosphonolipids as nonviral vectors: in vitro and in vivo applications. J. Pharm. Sci. 89, 629–638.

    Article  PubMed  CAS  Google Scholar 

  20. Delepine, P., Montier, T., Guillaume, C., Vaysse, L., Le Pape, A., and Ferec, C. (2002) Visualization of the transgene distribution according to the administration route allows prediction of the transfection efficacy and validation of the results obtained. Gene Ther. 9, 736–739.

    Article  PubMed  CAS  Google Scholar 

  21. Montier, T., Cavalier, A., Delepine, P., et al. (2003) The use of in situ hybridization to study the transgene pathway following cellular transfection with cationic phosphonolipids. Blood Cells Mol. Dis. 30, 112–123.

    Article  PubMed  CAS  Google Scholar 

  22. Fajac, I., Briand, P., Monsigny, M., and Midoux, P. (1999) Sugar-mediated uptake of glycosylated polylysines and gene transfer into normal and cystic fibrosis airway epithelial cells. Hum Gene Ther. 10, 395–406.

    Article  PubMed  CAS  Google Scholar 

  23. Diebold, S. S., Kursa, M., Wagner, E., Cotten, M., and Zenke, M. (1999) Mannose polyethylenimine conjugates for targeted DNA delivery into dendritic cells. J. Biol. Chem. 274, 19,087–19,094.

    Article  CAS  Google Scholar 

  24. Goula, D., Benoist, C., Mantero, S., Merlo, G., Levi, G., and Demeneix, B. A. (1998) Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther. 5, 1291–1295.

    Article  PubMed  CAS  Google Scholar 

  25. Li, S., Tan, Y., Viroonchatapan, E., Pitt, B. R., and Huang, L. (2000) Targeted gene delivery to pulmonary endothelium by anti-PECAM antibody. Am. J. Physiol. Lung. Cell. Mol. Physiol. 278, L504-L511.

    PubMed  CAS  Google Scholar 

  26. Cavazzana-Calvo, M., Hacein-Bey, S., de Saint Basile, G., et al. (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672.

    Article  PubMed  CAS  Google Scholar 

  27. Temme, A., Morgenroth, A., Schmitz, M., et al. (2002) Efficient transduction and long-term retroviral expression of the melanoma-associated tumor antigen tyrosinase in CD34(+) cord blood-derived dendritic cells. Gene Ther. 9, 1551–1560.

    Article  PubMed  CAS  Google Scholar 

  28. Yung, M. W., Gould, J., and Upton G. J. (2002) Nasal polyposis in children with cystic fibrosis: a long-term follow-up study. Ann. Otol. Rhinol. Laryngol. 111, 1081–1086.

    PubMed  Google Scholar 

  29. Wu, R., Yankaskas, J., Cheng, E., Knowles, M. R., and Boucher, R. (1985) Growth and differentiation of human nasal epithelial cells in culture: serum-free, hormone-supplemented medium and proteoglycan synthesis. Am. Rev. Respir. Dis. 132, 311–320.

    PubMed  CAS  Google Scholar 

  30. Laoukili, J., Perret, E., Willems, T., et al. (2001) IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells. Clin Invest. 108, 1817–1824.

    Article  CAS  Google Scholar 

  31. Brezillon, S., Dupuit, F., Hinnrasky, J., et al. (1995) Decreased expression of the CFTR protein in remodeled human nasal epithelium from non-cystic fibrosis patients. Lab Invest. 72, 191–200.

    PubMed  CAS  Google Scholar 

  32. Sersale, G., Casotti, V., Di Cicco, M., et al. (2001) Human respiratory cells from nasal polyps as a model for gene transfer by non-viral cationic vectors. Acta Otolaryngol. 121, 76–82.

    Article  PubMed  CAS  Google Scholar 

  33. Hart, S. L., Mayall, E., Stern, M., et al. (1995) The introduction of two silent mutations into a CFTR cDNA construct allows improved detection of exogenous mRNA in gene transfer experiments. Hum. Mol. Genet. 4, 1597–1602.

    Article  PubMed  CAS  Google Scholar 

  34. Felgner, J. H., Kumar, R., Sridhar, C. N., et al. (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem. 269, 2550–2561.

    PubMed  CAS  Google Scholar 

  35. Jacquot, J., Puchelle, E., Hinnrasky, J., et al. (1993) Localization of the cystic fibrosis transmembrane conductance regulator in airway secretory glands. Eur. Respir. J. 6, 169–176.

    PubMed  CAS  Google Scholar 

  36. Rubenstein, R. C. and Zeitlin, P. L. (2000) Sodium 4-phenylbutyrate downregulates HSC70: implications for intracellular trafficking of ΔF508-CFTR. Am. J. Physiol. Cell Physiol. 278, 259–269.

    Google Scholar 

  37. Jensen, T. J., Loo, M. A., Pind, S., Williams, D. B., Goldberg, A. L., and Riordan, J. R. (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129–135.

    Article  PubMed  CAS  Google Scholar 

  38. Felgner, P. L. and Ringold, G. M. (1989) Cationic liposome-mediated transfection. Nature 337, 387, 388.

    Article  PubMed  CAS  Google Scholar 

  39. Ono, T., Fujino, Y., Tsuchiya, T., and Tsuda, M. (1990). Plasmid DNAs directly injected into mouse brain with lipofectin can be incorporated and expressed by brain cells. Neurosci. Lett. 117, 259–263.

    Article  PubMed  CAS  Google Scholar 

  40. Son, K., and Huang, L. (1996). Factors influencing the drug sensitization of human tumor cells for in situ lipofection. Gene Ther. 3, 630–634.

    PubMed  CAS  Google Scholar 

  41. Raz, E., Carson, D. A., Parker, S. E., et al. (1994). Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc. Natl. Acad. Sci. USA 91, 9519–9523.

    Article  PubMed  CAS  Google Scholar 

  42. Liu, Y., Mounkes, L. C., Liggit, H. D., et al. (1997). Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat. Biotechnol. 15, 167–173.

    Article  PubMed  CAS  Google Scholar 

  43. Fajac, I., Briand, P., Monsigny, M., and Midoux, P. (1999) Sugar-mediated uptake of glycosylated polylysines and gene transfer into normal and cystic fibrosis airway epithelial cells. Hum Gene Ther. 10, 395–406.

    Article  PubMed  CAS  Google Scholar 

  44. Bestor, T. H. (2000) Gene silencing as a threat to the success of gene therapy. J. Clin. Invest. 105, 409–411.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan Montier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montier, T., Delépine, P., Marianowski, R. et al. CFTR transgene expression in primary ΔF508 epithelial cell cultures from human nasal polyps following gene transfer with cationic phosphonolipids. Mol Biotechnol 26, 193–205 (2004). https://doi.org/10.1385/MB:26:3:193

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:26:3:193

Index Entries

Navigation