Skip to main content
Log in

FDA-preapproved drugs targeted to the translational regulation and processing of the amyloid precursor protein

  • Anti-Amyloid
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The 5′ untranslated region (5′UTR) of the transcript encoding the Alzheimer’s amyloid precursor protein (APP) is a key regulatory sequence that determines the amount of intracellular APP holoprotein present in brain derived cells. Using neuroblastoma cells (SY5Y) we developed a transfection based screen of a library of FDA drugs to identify compounds that limited APP luciferase reporter expression translated from the APP 5′UTR. Paroxetine (Paxil™), dimercaptopropanol, phenserine, desferrioxamine, tetrathiolmobdylate, and azithromycin were six leads that were subsequently found to also suppress APP holoprotein levels or to alter APP cleavage (azithromycin). Since APP holoprotein levels are proportionate to Aβ peptide output in many systems we tested the efficacy of paroxetine and dimercaptopropanol to limit Aβ secretion as measured by ELISA assays. Paroxetine and dimercaptopropanol limited Aβ peptide secretion from lens epithelial cells (B3 cells). Interestingly, paroxetine changed the steady-state levels of transferrin receptor mRNAs. These data suggested that this serotonin reuptake inhibitor (SSRI) provided extra pharmacological action to chelate interacellular iron or change the intracellular iron distribution. An altered iron distribution would be predicted to indirectly limit APP holoprotein expression and Aβ peptide secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arjona A., Pooler A., Lee R., and Wurtman R. (2002) Effect of a 5-HT(2C) serotonin agonist, dexnorfenfluramine, on amyloid precursor protein metabolism in guinea pigs. Brain Res. 951, 135.

    Article  PubMed  CAS  Google Scholar 

  • Chishti M. A., Yang D. S., Janus C., Phinney A. L., Horne P., Pearson J., et al. (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J. Biol. Chem. 276, 21562–21570.

    Article  PubMed  CAS  Google Scholar 

  • Crapper McLachlan D. R., Dalton A. J., Kruck T. P. A., Bell M. Y., Smith W. L., Kalow W., and Andrews D. F. (1991). Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 337, 1304–1308.

    Article  PubMed  CAS  Google Scholar 

  • Feng Y., Zhang F., Lokey L. K., Chastain J. L., Lakkis L., Eberhart D., and Warren S. T. (1995) Translational suppression by trinucleotide repeat expansion at FMR1. Science 268, 731–734.

    Article  PubMed  CAS  Google Scholar 

  • Khan W. A., Sahaa D., Rahmana A., Salama M., Bogaertsa J., and Bennish M. (2002) Comparison of single-dose azithromycin and 12-dose, 3-day erythromycin for childhood cholera: a randomized, double-blind trial. Lancet 360(9374), 1722–1727.

    Article  PubMed  CAS  Google Scholar 

  • Klausner R., Rouault T. A., and Harford J. B. (1993) Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72, 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Lesne S., Docagne F., Gabriel C., Liot G., Lahiri D. K., Buee L., et al. (2003) Transforming growth factor-beta 1 potentiates amyloid-beta generation in astrocytes and in transgenic mice. J. Biol. Chem. 278, 18408–18418.

    Article  PubMed  CAS  Google Scholar 

  • Lim G. P., Yang F., Chu T., Chen P., Beech W., Teter B., et al. (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J. Neurosci. 20, 5709–5714.

    PubMed  CAS  Google Scholar 

  • Ly B. T., Williams S. R., and Clark R. F. (2002) Mercuric oxide poisoning treated with whole-bowel irrigation and chelation therapy. Ann Emerg. Med. 39(3), 312–315.

    Article  PubMed  Google Scholar 

  • Mandinov L., Mandinova A., Kyurkchiev S., Kyurkchiev D., Kehayov I., Kolev V., et al. (2003) Copper chelation represses the vascular response to injury. Proc. Natl. Acad. Sci. U. S. A. 100, 6700–6705.

    Article  PubMed  CAS  Google Scholar 

  • Moechars D. G. M., Kuiperi C., Laenen I., and Van Leuven F. (1998) Aggressive behaviour in transgenic mice expressing APP is alleviated by serotonergic drugs. Neuroreport 9, 3561–3564.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson L., Rogers J., and Potter H. (1998) The essential role of inflammation and induced gene expression in the pathogenic pathway of Alzheimer’s disease. Front. Biosci. 3, 436–446.

    Google Scholar 

  • Payton S., Cahill C., Randall J., Gullans S., and Rogers J. (2003) Alzheimer’s disease drug discovery targeted to the APP mRNA 5′ untranslated region; paroxetine and dimercaptopropanol are drug hits. J. Mol. Neurosci., in press.

  • Refolo L. M., Pappolla M. A., LaFrancois J., Malester B., Schmidt S. D., Thomas-Bryant T., et al. (2001) A cholesteol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Neurobiol Dis. 8, 890–899.

    Article  PubMed  CAS  Google Scholar 

  • Rogers J. T., Leiter L. M., McPhee J., Cahill C. M., Zhan S. S., Potter H., and Nilsson L. N. (1999) Translation of the Alzheimer amyloid precursor protein mRNA is upregulated by interleukin-1 through 5′-untranslated region sequences. J. Biol. Chem. 274, 6421–6431.

    Article  PubMed  CAS  Google Scholar 

  • Rogers J. T., Randall J., Cahill C. M., Eder P. S., Huang X., Gunshin H., et al. (2002a) An iron-responsive element type II in the 5′ untranslated region of the Alzheimer’s amyloid precursor protein transcript. J. Biol. Chem. 277, 45518–45528.

    Article  PubMed  CAS  Google Scholar 

  • Rogers J. T., Randall J., Eder P. S., Huang X., Bush A. I., Tanzi R. E., et al. (2002b) Alzheimer’s disease drug discovery targeted to the APP mRNA 5′ untranslated region. J. Mol. Neurosci. 19, 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Shaw K. T., Utsuki T., Rogers J., Yu Q. S., Sambamurti K., Brossi A., et al. (2001) Phenserine regulates translation of beta-amyloid precursor protein mRNA by a putative interleukin-1 responsive element, a target for drug development. Proc. Natl. Acad. Sci. U. S. A. 98, 7605–7610.

    Article  PubMed  CAS  Google Scholar 

  • Svitkin Y. V., Pause A., Haghighat A., Pyronnet S., Witherell G., Belsham G. J., and Sonenberg N. (2001) The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA5′ secondary structure. RNA 7, 382–394.

    Article  PubMed  CAS  Google Scholar 

  • Weggen S., Eriksen J. L., Das P., Sagi S. A., Wang R., Pietrzik C. U., et al. (2001) A subset of NSAIDs lower amyloidogenic Abeta-42 independently of cyclooxygenase activity. Nature 414, 212–216.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack T. Rogers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morse, L.J., Payton, S.M., Cuny, G.D. et al. FDA-preapproved drugs targeted to the translational regulation and processing of the amyloid precursor protein. J Mol Neurosci 24, 129–136 (2004). https://doi.org/10.1385/JMN:24:1:129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:24:1:129

Index Entries

Navigation