Skip to main content
Log in

Role of acyl-coenzyme A

Cholesterol acyltransferase activity in the processing of the amyloid precursor protein

  • Lipid-Lowering Therapies
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive memory deficit, cognitive impairment, and personality changes accompanied by specific structural abnormalities in the brain. Deposition of amyloid-β (Aβ) peptide into senile plaques is a consistent feature of the brains of patients affected by AD. Studies with both animal and cellular models of AD have shown that cholesterol homeostasis and distribution regulate Aβ generation. We have provided genetic, biochemical, and metabolic evidence that implicates intracellular cholesterol distribution, rather than total cholesterol levels, in the regulation of Aβ generation. This minireview focuses on the role of acyl-coenzyme A: cholesterol acyltransferase activity (ACAT) in Aβ generation. In genetically mutant cell lines that overproduce cholesterol but cannot synthesize cholesteryl esters (CEs) because of deficient ACAT activity, Aβ production is almost completely inhibited. Acyl-coenzyme A: cholesterol acyltransferase activity (ACAT) inhibitors, currently being developed for the treatment and prevention of atherosclerosis, reduce CE levels and Aβ generation by up to 50% in cell culture models of AD. Future mechanistic and transgenic animal studies are needed to evaluate the potential use of ACAT inhibitors in the therapeutic treatment or prevention of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Cadigan K. M., Heider J. G., and Chang T. Y. (1988) Isolation and characterization of Chinese hamster ovary cell mutants deficient in acyl-coenzyme A: cholesterol acyltransferase activity. J. Biol. Chem. 263, 274–282.

    PubMed  CAS  Google Scholar 

  • Chang T. Y., Chang C. C., and Cheng D. (1997) Acylcoenzyme A:cholesterol acyltransferase. Annu. Rev. Biochem. 66, 613–638.

    Article  PubMed  CAS  Google Scholar 

  • Chang T. Y., Chang C. C., Lin S., Yu C., Li B. L., and Miyazaki A. (2001) Roles of acyl-coenzyme A:cholesterol acyltransferase-1 and -2. Curr. Opin. Lipidol. 12, 289–296.

    Article  PubMed  CAS  Google Scholar 

  • Eckert G. P., Kirsch C., and Muller W. E. (2003) Brain-membrane cholesterol in Alzheimer’s disease. J. Nutr. Health Aging 7, 18–23.

    PubMed  CAS  Google Scholar 

  • Fassbender K., Simons M., Bergmann C., Stroick M., Lutjohann D., Keller P., et al. (2001) Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc. Natl. Acad. Sci. U. S. A. 98, 5856–5861.

    Article  PubMed  CAS  Google Scholar 

  • Frears E. R., Stephens D. J., Walters C. E., Davies H., and Austen B. M. (1999) The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 10, 1699–1705.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T. (2001) Cholesterol, Abeta and Alzheimer’s disease. Trends Neurosci. 24, S45-S48.

    Article  PubMed  CAS  Google Scholar 

  • Puglielli L., Konopka G., Pack-Chung E., Ingano L. A., Berezovska O., Hyman B. T., et al. (2001) Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat. Cell. Biol. 3, 905–912.

    Article  PubMed  CAS  Google Scholar 

  • Puglielli L., Tanzi R. E., and Kovacs D. M. (2003) Alzheimer’s disease: the cholesterol connection. Nat. Neurosci. 6, 345–351.

    Article  PubMed  CAS  Google Scholar 

  • Refolo L. M., Pappolla M. A., LaFrancois J., Malester B., Schmidt S. D., Thomas-Bryant T., et al. (2001) A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Neurobiol. Dis. 8, 890–899.

    Article  PubMed  CAS  Google Scholar 

  • Refolo L. M., Pappolla M. A., Malester B., LaFrancois J., Bryant-Thomas T., Wang R., et al. (2000) Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7, 321–331.

    Article  PubMed  CAS  Google Scholar 

  • Simons M., Keller P., De Strooper B., Beyreuther K., Dotti C. G., and Simons K. (1998) Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc. Natl. Acad. Sci. U. S. A. 95, 6460–6464.

    Article  PubMed  CAS  Google Scholar 

  • Tschape J. A., Hammerschmied C., Muhlig-Versen M., Athenstaedt K., Daum G., and Kretzschmar D. (2002) The neurodegeneration mutant lochrig interferes with cholesterol homeostasis and Appl processing. EMBO J. 21, 6367–6376.

    Article  PubMed  Google Scholar 

  • Wollmer M. A., Streffer J. R., Tsolaki M., Grimaldi L. M., Lutjohann D., Thal D., et al. (2003) Genetic association of acyl-coenzyme A: cholesterol acyltransferase with cerebrospinal fluid cholesterol levels, brain amyloid load, and risk for Alzheimer’s disease. Mol. Psychiatry 8, 635–638.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora M. Kovacs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puglielli, L., Ellis, B.C., Ingano, L.A.M. et al. Role of acyl-coenzyme A. J Mol Neurosci 24, 93–96 (2004). https://doi.org/10.1385/JMN:24:1:093

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:24:1:093

Index Entries

Navigation