Skip to main content
Log in

New insights into mathematical modeling of the immune system

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

In order to understand the integrated behavior of the immune system, there is no alternative to mathematical modeling. In addition, the advent of experimental tools such as gene arrays and proteomics poses new challenges to immunologists who are now faced with more information than can be readily incorporated into existing paradigms of immunity. We review here our ongoing efforts to develop mathematical models of immune responses to infectious disease, highlight a new modeling approach that is more accessible to immunologists, and describe new ways to analyze microarray data. These are collaborative studies between experimental immunologists, mathematicians, and computer scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morel PA: Mathematical modeling of immunological reactions. Frontiers Biosci 1988;3:338–347.

    Google Scholar 

  2. Burke MA, Morel BF, Oriss TB, Bray J, McCarthy SA, Morel PA: Modeling the proliferative response of T cells to IL-2 and IL-4. Cell Immunol 1997;178:42–52.

    Article  PubMed  CAS  Google Scholar 

  3. Morel BF, Burke MA, Kalagnanam JR, McCarthy SA, Tweardy DJ, Morel PA. Making sense of the combined effect of interleukin-2 and interleukin-4 on lymphocytes using a mathematical model. Bull Mathemat Biol 1996;58:569–594.

    Article  CAS  Google Scholar 

  4. Fernandez-Botran R, Sanders VM, Mosmann TR, Vitetta ES: Lymphokine-mediated regulation of the proliferative response of clones of T helper 1 and T helper 2 cells. J Exp Med 1988;168:543–558.

    Article  PubMed  CAS  Google Scholar 

  5. Tufariello JM, Chan J, Flynn JL: Latent tuberculosis: mechanisms of host and bacillus that contribute to persistent infection. Lancet Infect Dis 2003;3: 578–590.

    Article  PubMed  CAS  Google Scholar 

  6. Flynn JL, Chan J: Immunology of tuberculosis. Ann Rev Immunol 2001;19:93–129.

    Article  CAS  Google Scholar 

  7. Gammack D, Doering CR, Kirschner DE: Macrophage response to Mycobacterium tuberculosis infection. J Math Biol 2004;48:218–242.

    Article  PubMed  CAS  Google Scholar 

  8. Marino S, Kirschner DE: The human immune response to Mycobacterium tuberculosis in lung and lymph node. J Theor Biol 2004;227:463–486.

    Article  PubMed  CAS  Google Scholar 

  9. Marino S, Pawar S, Fuller CL, Reinhart TA, Flynn JL, Kirschner DE: Dendritic cell trafficking and antigen presentation in the human immune response to Mycobacterium tuberculosis. J Immunol 2004;173: 494–506.

    PubMed  CAS  Google Scholar 

  10. Segovia-Juarez JL, Ganguli S, Kirschner D: Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J Theor Biol 2004;231:357–376.

    Article  PubMed  CAS  Google Scholar 

  11. Sud D, Bigbee C, Flynn JL, Kirschner DE: Contribution of CD8+ T cells to control of Mycobacterium tuberculosis infection. J Immunol 2006;176:4296–4314.

    PubMed  CAS  Google Scholar 

  12. Wigginton JE, Kirschner D: A model to predict cellmediated immune regulatory mechanisms during human infection with Mycobacterium tuberculosis. J Immunol 2001;166:1951–1967.

    PubMed  CAS  Google Scholar 

  13. Stenger S, Hanson DA, Teitelbaum R, et al: An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 1998;282:121–125.

    Article  PubMed  CAS  Google Scholar 

  14. Lazarevic V, Nolt D, Flynn JL: Long-term control of Mycobacterium tuberculosis infection is mediated by dynamic immune responses. J Immunol 2005;175: 1107–1117.

    PubMed  CAS  Google Scholar 

  15. Boldrick JC, Alizadeh AA, Diehn M, et al: Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc Natl Acad Sci USA 2002;99:972–977.

    Article  PubMed  CAS  Google Scholar 

  16. Corcoran DL, Feingold E, Dominick J, et al.: Footer: a quantitative comparative genomics method for efficient recognition of cis-regulatory elements. Genome Res 2005;15:840–847.

    Article  PubMed  CAS  Google Scholar 

  17. Delerive P, De Bosscher K, Besnard S, et al.: Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappa B and AP1. J Biol Chem 1999;274:32048–32054.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morel, P.A., Ta'asan, S., Morel, B.F. et al. New insights into mathematical modeling of the immune system. Immunol Res 36, 157–165 (2006). https://doi.org/10.1385/IR:36:1:157

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:36:1:157

Key Words

Navigation