Skip to main content
Log in

Chemoattractant receptor signaling and the control of lymphocyte migration

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

This review focuses on mechanisms by which chemoattractant receptors activate downstream signaling pathways in lymphocytes. An emphasis is placed on heterotrimeric G protein signaling with a discussion of the specific heterotrimeric G-proteins involved in lymphocyte chemotaxis and motility and the role of regulator of G protein signaling (RGS) proteins in controlling the activation of downstream effectors. Also considered are those direct downstream effectors known to function in lymphocyte chemotaxis and/or motility. The consequences of targeting genes suspected, known, or serendipitously found to be involved in chemokine receptor signaling pathways form much of a basis for the review. When needed for clarification, reference to studies of chemoattractant signaling in model organisms and in neutrophils with be compared and contrasted to studies in lymphocytes. Finally, the emergence of tools to image lymphocyte in vitro and in vivo will be mentioned as they are increasing helpful for the analysis of lymphocyte trafficking and amendable to the study of chemokine receptor signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Springer TA: Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994;76:301–314.

    PubMed  CAS  Google Scholar 

  2. Kunkel EJ, Butcher EC: Chemokines and the tissue-specific migration of lymphocytes. Immunity 2002;16:1–4.

    PubMed  CAS  Google Scholar 

  3. Rot A, von Andrian UH: Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 2004;22:891–928.

    PubMed  CAS  Google Scholar 

  4. Balabanian K, Lagane B, Pablos JL, et al: WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 2005;105:2449–2457.

    PubMed  CAS  Google Scholar 

  5. Norman MU, Hickey MJ: Mechanisms of lymphocyte migration in autoimmune disease. Tissue antigens 2005;66:163–172.

    PubMed  CAS  Google Scholar 

  6. Proudfoot AE, Power CA, Wells TN: The strategy of blocking the chemokine system to combat disease. Immunol Rev 2000;177:246–256.

    PubMed  CAS  Google Scholar 

  7. Power CA: Knock out models to dissect chemokine receptor function in vivo. J Immunol Methods 2003; 273:73–82.

    PubMed  CAS  Google Scholar 

  8. Wells TN, Power CA, Shaw JP, Proudfoot AE: Chemokine blockers-therapeutics in the making? Trends Pharmacol Sci 2006;27:41–47.

    PubMed  CAS  Google Scholar 

  9. Marinissen MJ, Gutkind JS: G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 2001;22:368–376.

    PubMed  CAS  Google Scholar 

  10. Onuffer JJ, Horuk R: Chemokines, chemokine receptors and small-molecule antagonists: recent developments. Trends Pharmacol Sci 2002;23:459–467.

    PubMed  CAS  Google Scholar 

  11. Cyster JG: Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 2005;23:127–159.

    PubMed  CAS  Google Scholar 

  12. Neer EJ: Heterotrimeric G proteins: organizers of transmembrane signals. Cell 1995;80:249–257.

    PubMed  CAS  Google Scholar 

  13. Hamm HE, Gilchrist A: Heterotrimeric G proteins. Curr Opin Cell Biol 1996;8:189–196.

    PubMed  CAS  Google Scholar 

  14. Offermanns S, Simon MI: Organization of transmembrane signalling by heterotrimeric G proteins. Cancer Surv 1996;27:177–198.

    PubMed  CAS  Google Scholar 

  15. Luttrell LM, Daaka Y, Lefkowitz RJ: Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 1999;11:177–183.

    PubMed  CAS  Google Scholar 

  16. Ahr B, Denizot M, Robert-Hebmann V, Brelot A, Biard-Piechaczyk M: Identification of the cytoplasmic domains of CXCR4 involved in Jak2 and STAT3 phosphorylation. J Biol Chem 2005;280:6692–6700.

    PubMed  CAS  Google Scholar 

  17. Moriguchi M, Hissong BD, Gadina M, et al: CXCL12 signaling is independent of Jak2 and Jak3. J Biol Chem 2005;280:17408–17414.

    PubMed  CAS  Google Scholar 

  18. Koelle MR, Horvitz HR: EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 1996;84:115–125.

    PubMed  CAS  Google Scholar 

  19. Druey KM, Blumer KJ, Kang VH, Kehrl JH: Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family. Nature 1996;379:742–746.

    PubMed  CAS  Google Scholar 

  20. Berman DM, Wilkie TM and Gilman AG: GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits. Cell 1996;86:445–452.

    PubMed  CAS  Google Scholar 

  21. Zhong H, Wade SM, Woolf PJ, Linderman JJ, Traynor JR, Neubig RR. A spatial focusing model for G protein signals. Regulator of G protein signaling (RGS) protein-mediated kinetic scaffolding. J Biol Chem 2003 278:7278–7284.

    PubMed  CAS  Google Scholar 

  22. Benians A, Nobles M, Hosny S, Tinker A: Regulators of G-protein signaling form a quaternary complex with the agonist, receptor, and G-protein. A novel explanation for the acceleration of signaling activation kinetics. J Biol Chem 2005;280:13383–13394.

    PubMed  CAS  Google Scholar 

  23. Lefkowitz RJ, Whalen EJ: beta-arrestins: traffic cops of cell signaling. Curr Opin Cell Biol 2004;16:162–168.

    PubMed  CAS  Google Scholar 

  24. Bargatze RF, Butcher EC: Rapid G protein-regulated activation event involved in lymphocyte binding to high endothelial venules. J Exp Med 1993;178:367–372.

    PubMed  CAS  Google Scholar 

  25. Cyster JG, Goodnow CC: Pertussis toxin inhibits migration of B and T lymphocytes into splenic white pulp cords. J Exp Med 1995;182:581–586.

    PubMed  CAS  Google Scholar 

  26. Spangrude GJ, Braaten BA, Daynes RA: Molecular mechanisms of lymphocyte extravasation. I. Studies of two selective inhibitors of lymphocyte recirculation. J Immunol 1984;132:354–362.

    PubMed  CAS  Google Scholar 

  27. Kehrl JH: G-protein-coupled receptor signaling, RGS proteins, and lymphocyte function. Crit Rev Immunol 2004;24:409–423.

    PubMed  CAS  Google Scholar 

  28. Arai H, Tsou CL, Charo IF: Chemotaxis in a lymphocyte cell line transfected with C-C chemokine receptor 2B: evidence that directed migration is mediated by betagamma dimers released by activation of Galphai-coupled receptors. Proc Natl Acad Sci USA 1997;94:14495–14499.

    PubMed  CAS  Google Scholar 

  29. Neptune ER, Bourne HR: Receptors induce chemotaxis by releasing the betagamma subunit of Gi, not by activating Gq or Gs. Proc Natl Acad Sci USA 1997;94:14489–14494.

    PubMed  CAS  Google Scholar 

  30. Rudolph U, Finegold MJ, Rich SS, et al: Ulcerative colitis and adenocarcinoma of the colon in G alpha i2-deficient mice. Nat Genet 1995;10:143–150.

    PubMed  CAS  Google Scholar 

  31. Han SB, Moratz C, Huang NN, et al: Rgs1 and Gnai2 regulate the entrance of B lymphocytes into lymph nodes and B cell motility within lymph node follicles. Immunity 2005;22:343–354.

    PubMed  CAS  Google Scholar 

  32. Hwang JI, Fraser ID, Choi S, Qin XF, Simon MI: Analysis of C5a-mediated chemotaxis by lentiviral delivery of small interfering RNA. Proc Natl Acad Sci USA 2004;101:488–493.

    PubMed  CAS  Google Scholar 

  33. Hwang JI, Choi S, Fraser ID, Chang MS, Simon MI: Silencing the expression of multiple Gbeta-subunits eliminates signaling mediated by all four families of G proteins. Proc Natl Acad Sci USA 2005;102:9493–9498.

    PubMed  CAS  Google Scholar 

  34. Chen CK, Eversole-Cire P, Zhang H, et al: Instability of GGL domain-containing RGS proteins in mice lacking the G protein beta-subunit Gbeta5. Proc Natl Acad Sci USA 2003;100:6604–6609.

    PubMed  CAS  Google Scholar 

  35. Offermanns S, Simon MI: Genetic analysis of mammalian G-protein signalling. Oncogene 1998;17:1375–1381.

    PubMed  CAS  Google Scholar 

  36. Girkontaite I, Missy K, Sakk V, et al: Lsc is required for marginal zone B cells, regulation of lymphocyte motility and immune responses. Nat Immunol 2001;2:855–862.

    PubMed  CAS  Google Scholar 

  37. Rubtsov A, Strauch P, Digiacomo A, Hu J, Pelanda R, Torres RM: Lsc regulates marginal-zone B cell migration and adhesion and is required for the IgMT-dependent antibody response. Immunity 2005;23:527–538.

    PubMed  CAS  Google Scholar 

  38. Coffield VM, Helms WS, Jiang Q, Su L: Galphal3 mediates a signal that is essential for proliferation and survival of thymocyte progenitors. J Exp Med 2004;200:1315–1324.

    PubMed  CAS  Google Scholar 

  39. Sierra DA, Gilbert DJ, Householder D, et al: Evolution of the regulators of G-protein signaling multigene family in mouse and human. Genomics 2002;79:177–185.

    PubMed  CAS  Google Scholar 

  40. Kozasa T, Jiang X, Hart MJ, et al: p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 1998;280:2109–2111.

    PubMed  CAS  Google Scholar 

  41. Koelle MR: A new family of G-protein regulators—the RGS proteins. Curr Opin Cell Biol 1997;9:143–147.

    PubMed  CAS  Google Scholar 

  42. Kehrl JH: Heterotrimetric G protein signaling: roles in immune function and fine-tuning by RGS proteins. Immunity 1998;8:1–10.

    PubMed  CAS  Google Scholar 

  43. Ross EM, Wilkie TM: GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 2000;69:795–827.

    PubMed  CAS  Google Scholar 

  44. Martin-McCaffrey L, Willard FS, Oliveira-dos-Santos AJ, et al: RGS14 is a mitotic spindle protein essential from the first division of the mammalian zygote. Dev Cell 2004;7:763–769.

    PubMed  CAS  Google Scholar 

  45. Cho H, Kim DU, Kehrl JH: RGS14 is a centrosomal and nuclear cytoplasmic shuttling protein that traffics to promyelocytic leukemia nuclear bodies following heat shock. J Biol Chem 2005;280:805–814.

    PubMed  CAS  Google Scholar 

  46. Chen CK, Burns ME, He W, Wensel TG, Baylor DA, Simon MI: Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1. Nature 2000;403:557–560.

    PubMed  CAS  Google Scholar 

  47. Oliveira-Dos-Santos AJ, Matsumoto G, Snow BE, et al: Regulation of T cell activation, anxiety, and male aggression by RGS2. Proc Natl Acad Sci USA 2000;97:12272–12277.

    PubMed  CAS  Google Scholar 

  48. Heximer SP, Watson N, Linder ME, Blumer KJ, Hepler JR: RGS2/G0S8 is a selective inhibitor of Gqalpha function. Proc Natl Acad Sci USA 1997;94:14389–14393.

    PubMed  CAS  Google Scholar 

  49. Moratz C, Hayman JR, Gu H, Kehrl JH: Abnormal B-cell responses to chemokines, disturbed plasma cell localization, and distorted immune tissue architecture in Rgs1-/-mice. Mol Cell Biol 2004;24:5767–5775.

    PubMed  CAS  Google Scholar 

  50. Johnson EN, Druey KM: Functional characterization of the G protein regulator RGS13. J Biol Chem 2002;277:16768–16774.

    PubMed  CAS  Google Scholar 

  51. Shi GX, Harrison K, Wilson GL, Moratz C, Kehrl JH: RGS13 regulates germinal center B lymphocytes responsiveness to CXC chemokine ligand (CXCL)12 and CXCL13. J Immunol 2002;169:2507–2515.

    PubMed  CAS  Google Scholar 

  52. Lippert E, Yowe DL, Gonzalo JA, et al: Role of regulator of G protein signaling 16 in inflammation-induced T lymphocyte migration and activation. J Immunol 2003;171:1542–1555.

    PubMed  CAS  Google Scholar 

  53. Han J-I, Huang N-N, Kim DU, Kehrl JH: RGS1 and RGS13 mRNA silencing in a human B lymphoma line enhances responsiveness to chemoattractants and impairs desensitization. J. Leukocyte Biol 2006;79:1357–1368.

    PubMed  CAS  Google Scholar 

  54. Ma YC, Huang J, Ali S, Lowry W, Huang XY: Src tyrosine kinase is a novel direct effector of G proteins. Cell 2000;102:635–646.

    PubMed  CAS  Google Scholar 

  55. Hidi R, Timmermans S, Liu E, et al: Phosphodiesterase and cyclic adenosine monophosphate-dependent inhibition of T-lymphocyte chemotaxis. Eur Respir J 2000;15:342–349.

    PubMed  CAS  Google Scholar 

  56. Inngjerdingen M, Torgersen KM, Maghazachi AA: Lck is required for stromal cell-derived factor 1 alpha (CXCL12)-induced lymphoid cell chemotaxis. Blood 2002;99:4318–4325.

    PubMed  CAS  Google Scholar 

  57. Okabe S, Fukuda S, Kim YJ, et al: Stromal cell-derived factor-1alpha/CXCL12-induced chemotaxis of T cells involves activation of the RasGAP-associated docking protein p62Dok-1. Blood 2005;105:474–480.

    PubMed  CAS  Google Scholar 

  58. Jiang Y, Ma W, Wan Y, Kozasa T, Hattori S, Huang XY: The G protein G alpha 12 stimulates Bruton's tyrosine kinase and a rasGAP through a conserved PH/BM domain. Nature 1998;395:808–813.

    PubMed  CAS  Google Scholar 

  59. Shi CS, Sinnarajah S, Cho H, Kozasa T, Kehrl JH: G13alpha-mediated PYK2 activation. PYK2 is a mediator of G13alpha-induced serum response element-dependent transcription. J Biol Chem 2000;275:24470–24476.

    PubMed  CAS  Google Scholar 

  60. Kurose H: Galpha 12 and Galpha 13 as key regulatory mediator in signal transduction. Life Sci 2003;74:155–161.

    PubMed  CAS  Google Scholar 

  61. Francis SA, Shen X, Young JB, Kaul P, Lerner DJ: Rho GEF Lsc is required for normal polarization, migration, and adhesion of formyl-peptide-stimulated neutrophils. Blood 2006;107:1627–1635.

    PubMed  CAS  Google Scholar 

  62. Li Z, Jiang H, Xie W, Zhang Z, Smrcka AV, Wu D: Roles of PLC-beta 2 and-beta3 and P13K gamma in chemoattractant-mediated signal transduction. Science 2000;287:1046–1049.

    PubMed  CAS  Google Scholar 

  63. Jiang H, Kuang Y, Wu Y, Xie W, Simon MI, Wu D: Roles of phospholipase C beta2 in chemoattractant-elicited responses. Proc Natl Acad Sci USA 1997;94:7971–7975.

    PubMed  CAS  Google Scholar 

  64. Lodowski DT, Barnhill JF, Pyskadlo RM, Ghirlando R, Sterne-Marr R, Tesmer JJ: The role of G beta gamma and domain interfaces in the activation of G protein-coupled receptor kinase 2. Biochemistry 2005;44:6058–6970.

    Google Scholar 

  65. Loudon RP, Perussia B, Benovic JL: Differentially regulated expression of the G-protein-coupled receptor kinases, betaARK and GRK6, during myelomonocytic cell development in vitro. Blood 1996;88:4547–4557.

    PubMed  CAS  Google Scholar 

  66. Fong AM, Premont RT, Richardson RM, Yu YR, Lefkowitz RJ, Patel DD: Defective lymphocyte chemotaxis in beta-arrestin2-and GRK6-deficient mice. Proc Natl Acad Sci USA 2002;99:7478–7483.

    PubMed  CAS  Google Scholar 

  67. Shenoy SK, Lefkowitz RJ: Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem J 2003;375:503–515.

    PubMed  CAS  Google Scholar 

  68. Cant SH, Pitcher JA: G protein-coupled receptor kinase 2-mediated phosphorylation of ezrin is required for G protein-coupled receptor-dependent reorganization of the actin cytoskeleton. Mol Biol Cell 2005;16:3088–3099.

    PubMed  CAS  Google Scholar 

  69. Lee JH, Katakai T, Hara T, Gonda H, Sugai M, Shimizu A: Roles of p-ERM and Rho-ROCK signaling in lymphocyte polarity and uropod formation. J Cell Biol 2004;167:327–337.

    PubMed  CAS  Google Scholar 

  70. Jaber M, Koch WJ, Rockman H, et al: Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci USA 1996;93:12974–12979.

    PubMed  CAS  Google Scholar 

  71. Vroon A, Heijnen CJ, Lombardi MS, et al: Reduced GRK2 level in T cells potentiates chemotaxis and signaling in response to CCL4. J Leukoc Biol 2004;75:901–909.

    PubMed  CAS  Google Scholar 

  72. Stephens LR, Eguinoa A, Erdjument-Bromage H, et al: The G beta gamma sensitivity of a P13K is dependent upon a tightly associated adaptor, p101. Cell 1997;89:105–114.

    PubMed  CAS  Google Scholar 

  73. Suire S, Coadwell J, Ferguson GJ, Davidson K, Hawkins P, Stephens L: p84, a new Gbetagamma-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110gamma. Curr Biol 2005;15:566–570.

    PubMed  CAS  Google Scholar 

  74. Sasaki T, Irie-Sasaki J, Jones RG, et al: Function of P13Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 2000;287:1040–1046.

    PubMed  CAS  Google Scholar 

  75. Hirsch E, Katanaev VL, Garlanda C, et al: Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 2000;287:1049–1053.

    PubMed  CAS  Google Scholar 

  76. Reif K, Okkenhaug K, Sasaki T, Penninger JM, Vanhaesebroeck B, Cyster JG: Cutting edge: differential roles for phosphoinositide 3-kinases p110gamma and p110delta, in lymphocyte chemotaxis and homing. J Immunol 2004;173:2236–2240.

    PubMed  CAS  Google Scholar 

  77. Ortolano S, Hwang I-Y, Han SB, Kehrl JH: Role for phosphoinositide 3-kinases, Bruton's tyrosine kinase, and Jun kinases in B-lymphocyte chemotaxis and homing. Eur J Immunol 2006;36:1285–1295.

    PubMed  CAS  Google Scholar 

  78. Manahan CL, Iglesias PA, Long Y, Devretoes PN: Chemoattractant signaling in Dictyostelium discoideum. Ann. Rev Cell Dev Biol 2004;20:223–253.

    CAS  Google Scholar 

  79. Wang F, Herzmark P, Weiner OD, Srinivasan S, Servant G, Bourne HR: Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat Cell Biol 2002;4:513–518.

    PubMed  CAS  Google Scholar 

  80. Xu J, Wang F, Van Keymeulen A, et al: Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 2003;114:201–214.

    PubMed  CAS  Google Scholar 

  81. Devreotes P, Janetopoulos C: Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J Biol Chem 2003;278:20445–20448.

    PubMed  CAS  Google Scholar 

  82. Arrieumerlou C, Meyer T: A local coupling model and compass parameter for eukaryotic chemotaxis. Dev Cell 2005;8:215–227.

    PubMed  CAS  Google Scholar 

  83. Manes S, Gomez-Mouton C, Lacalle RA, Jimenez-Baranda S, Mira E, Martinez AC: Mastering time and space: immune cell polarization and chemotaxis. Semin Immunol 2005;17:77–86.

    PubMed  CAS  Google Scholar 

  84. Schoenwaelder SM, Burridge K: Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 1999;11:274–286.

    PubMed  CAS  Google Scholar 

  85. Kinashi T, Katagiri K: Regulation of immune cell adhesion and migration by regulator of adhesion and cell polarization enriched in lymphoid tissues. Immunology 2005;116:164–171.

    PubMed  CAS  Google Scholar 

  86. Rossman KL, Der CJ, Sondek J: GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 2005;6:167–180.

    PubMed  CAS  Google Scholar 

  87. Srinivasan S, Wang F, Glavas S, et al: Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J Cell Biol 2003;160:375–385.

    PubMed  CAS  Google Scholar 

  88. Croker BA, Tarlinton DM, Cluse LA, et al: The Rac2 guanosine triphosphatase regulates B lymphocyte antigen receptor responses and chemotaxis and is required for establishment of B-1a and marginal zone B lymphocytes. J Immunol 2002;168:3376–3386.

    PubMed  CAS  Google Scholar 

  89. Fukui Y, Hashimoto O, Sanui T, et al: Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 2001;412:826–831.

    PubMed  CAS  Google Scholar 

  90. Cote JF, Motoyama AB, Bush JA, Vuori K: A novel and evolutionarily conserved PtdIns(3,4,5)P3-binding domain is necessary for DOCK180 signalling. Nat Cell Biol 2005;7:797–807.

    PubMed  CAS  Google Scholar 

  91. Vicente-Manzanares M, Cruz-Adalia A, Martin-Cofreces NB, et al: Control of lymphocyte shape and the chemotactic response by the GTP exchange factor Vav. Blood 2005;105:3026–3034.

    PubMed  CAS  Google Scholar 

  92. Takesono A, Horai R, Mandai M, Dombroski D, Schwartzberg PL: Requirement for Tec kinases in chemokine-induced migration and activation of Cdc42 and Rac. Curr Biol 2004;14:917–922.

    PubMed  CAS  Google Scholar 

  93. Welch HC, Coadwell WJ, Ellson CD, et al: P-Rex1, a PtdIns(3,4,5)P3-and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Cell 2002;108:809–821.

    PubMed  CAS  Google Scholar 

  94. Hill K, Krugmann S, Andrews SR, et al: Regulation of P-Rexl by phosphatidylinositol (3,4,5)-trisphosphate and Gbetagamma subunits. J Biol Chem 2005;280:4166–4173.

    PubMed  CAS  Google Scholar 

  95. Dong X, Mo Z, Bokoch G, Guo C, Li Z, Wu D: P-Rexl is a primary Rac2 guanine nucleotide exchange factor in mouse neutrophils. Curr Biol 2005;15:1874–1879.

    PubMed  CAS  Google Scholar 

  96. Haddad E, Zugaza JL, Louache F, et al: The interaction between Cdc42 and WASP is required for SDF-1-induced T-lymphocyte chemotaxis. Blood 2001;97:33–38.

    PubMed  CAS  Google Scholar 

  97. Li Z, Hannigan M, Mo Z, et al: Directional sensing requires G beta gamma-mediated PAK1 and PIX alpha-dependent activation of Cdc42. Cell 2003;114:215–227.

    PubMed  CAS  Google Scholar 

  98. Vicente-Manzanares M, Rey M, Perez-Martinez M, et al: The RhoA effector mDia is induced during T cell activation and regulates actin polymerization and cell migration in T lymphocytes. J Immunol 2003;171:1023–1034.

    PubMed  CAS  Google Scholar 

  99. Giagulli C, Scarpini E, Ottoboni L, et al: RhoA and zeta PKC control distinct modalities of LFA-1 activation by chemokines: critical role of LFA-1 affinity triggering in lymphocyte in vivo homing. Immunity 2004;20:25–35.

    PubMed  CAS  Google Scholar 

  100. Bardi G, Niggli V, Loetscher P: Rho kinase is required for CCR7-mediated polarization and chemotaxis of T lymphocytes. FEBS Lett 2003;542:79–83.

    PubMed  CAS  Google Scholar 

  101. Shimonaka M, Katagiri K, Nakayama T, et al: Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J Cell Biol 2003;161:417–427.

    PubMed  CAS  Google Scholar 

  102. Katagiri K, Maeda A, Shimonaka M, Kinashi T: RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat Immunol 2003;4:741–748.

    PubMed  CAS  Google Scholar 

  103. Katagiri K, Ohnishi N, Kabashima K, et al: Crucial functions of the Rap1 effector molecule RAPL in lymphocyte and dendritic cell trafficking. Nat Immunol 2004;5:1045–1051.

    PubMed  CAS  Google Scholar 

  104. Cahalan MD, Parker I, Wei SH, Miller MJ: Two-photon tissue imaging: seeing the immune system in a fresh light. Nat Rev Immunol 2002;2:872–880.

    PubMed  CAS  Google Scholar 

  105. Germain RN, Castellino F, Chieppa M, et al: An extended vision for dynamic high-resolution intravital immune imaging. Semin Immunol 2005;17:431–441.

    PubMed  CAS  Google Scholar 

  106. Halin C, Rodrigo Mora J, Sumen C, von Andrian UH: In vivo imaging of lymphocyte trafficking. Annu Rev Cell Dev Biol 2005;21:581–603.

    PubMed  CAS  Google Scholar 

  107. Yin X, Chtanova T, Ladi E, Robey EA: Thymocyte motility: mutants, movies and migration patterns. Curr Opin Immunol 2006;18:191–197.

    PubMed  CAS  Google Scholar 

  108. von Andrian UH, M'Rini C: In situ analysis of lymphocyte migration to lymph nodes. Cell Adhes Commun 1998;6:85–96.

    Google Scholar 

  109. Laudanna C, Constantin G: New models of intravital microscopy for analysis of chemokine receptor-mediated leukocyte vascular recognition. J Immunol Methods 2003;273:115–123.

    PubMed  CAS  Google Scholar 

  110. Grayson MH, Hotchkiss RS, Karl IE, Holtzman MJ, Chaplin DD: Intravital microscopy comparing T lymphocyte trafficking to the spleen and the mesenteric lymph node. Am J Physiol Heart Circ Physiol 2003;284:H2213–2226.

    PubMed  CAS  Google Scholar 

  111. Wei SH, Parker I, Miller MJ, Cahalan MD: A stochastic view of lymphocyte motility and trafficking within the lymph node. Immunol Rev 2003;195:136–159.

    PubMed  CAS  Google Scholar 

  112. Okada T, Miller MJ, Parker I, et al: Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. Plos Biology 2005;3:1–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Kehrl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kehrl, J.H. Chemoattractant receptor signaling and the control of lymphocyte migration. Immunol Res 34, 211–227 (2006). https://doi.org/10.1385/IR:34:3:211

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:34:3:211

Key words

Navigation