Skip to main content
Log in

Drug development in pancreatic cancer

Finally, biology begets therapy

  • Review Article
  • Published:
International Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Pancreatic cancer is rarely curable, and only 5% of patients achieve long-term survival. The vast majority of patients present with metastatic or unresectable disease. Standard chemotherapy with gemcitabine provides clinical benefit to only a small minority of patients. Thus, the development and investigation of new therapies is clearly needed.

As knowledge of the underlying biology of pancreatic cancer has increased, targeted therapies based upon preclinical laboratory work have been developed, and are entering clinical trials. Some of these agents lack traditional dose-limiting toxicities (DLTs) at biologically active doses, and therefore clinical evaluation may not follow traditional guidelines for cytotoxic drug development.

This article focuses on targeted therapies currently undergoing clinical evaluation in pancreatic cancer. Classes of therapeutics reviewed include those targeting tumor-microenvironment interactions (matrix metalloproteinase inhibitors, vascular endothelial growth-factor blockade), signal transduction (e.g., farnesyltransferase inhibitors), growth-factor receptors (epidermal growth-factor receptor blockade, Her-2/neu, gastrin), and vaccine approaches. Currently, there is a renewed optimism that the clinical application of biologic understanding will lead to an improved outcome for patients with pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Thomas A, Murray T, Thun M. Cancer Statistics 2002; CA Cancer J Clin 2000;52:23–47.

    Article  Google Scholar 

  2. Schnall SF, Macdonald JS. Chemotherapy of adenocarcinoma of the pancreas. Semin Oncol 1996;23:220–228.

    Google Scholar 

  3. Yeo CJ, Cameron JL, Sohn TA, et al. Six hundred and fifty consecutive pancreaticoduodenectomies in the 1990s: pathology, complications, and outcomes. Ann Surg 1997;226:248–257.

    PubMed  CAS  Google Scholar 

  4. Cohen SJ, Pinover WH, Watson JC, et al. Pancreatic Cancer. Current Treatment Options in Oncology 2000;1:375–386.

    PubMed  CAS  Google Scholar 

  5. Burris HA, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997;15:2403–2413.

    PubMed  CAS  Google Scholar 

  6. Berlin JD, Catalano P, Thomas JP, et al. Phase III study of gemcitabine in combination with fluorouracil versus gemcitabine alone in patients with advanced pancreatic carcinoma: Eastern Cooperative Oncology Group trial E2297. J Clin Oncol 2002;20:3270–3275.

    PubMed  CAS  Google Scholar 

  7. van den Hooff A. Stromal involvement in malignant growth. Adv Cancer Res 1988;50:159–196.

    PubMed  Google Scholar 

  8. Basset P, Bellocq J, Qolf C, et al. A novel metalloproteinase gene specifically expressed in stromal cell breast carcinomas. Nature 1992;348:699–704.

    Google Scholar 

  9. Nakamura T, Matsumoto K, Kiritoshi A, et al. Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res 1997;57:3305–3313.

    PubMed  CAS  Google Scholar 

  10. Bauer E, Uitto J, Walters R, Eisen A. Enhanced collagen production by fibroblasts derived from human basal cell carcinomas. Cancer Res 1979;39:4594.

    PubMed  CAS  Google Scholar 

  11. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1:27.

    PubMed  CAS  Google Scholar 

  12. Auerbach W, Auerbach R. 1994; Angiogenesis inhibition: a review. Pharmacol Ther 63:265.

    PubMed  CAS  Google Scholar 

  13. Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Nat Cancer Inst 2001;93:178–193.

    PubMed  CAS  Google Scholar 

  14. Kleiner DE, Stetler-Stevenson WG. Matrix metalloproteinases and metastasis. Canc Chem Pharm 1999;43:S42-S51.

    CAS  Google Scholar 

  15. Brown PD, Giavazzi R. Matrix metalloproteinase inhibition: a review of anti-tumour activity. Ann Oncol 1995;6:967–974.

    PubMed  CAS  Google Scholar 

  16. Hashimoto K, Kihira Y, Matuo Y, et al. Expression of matrix metalloproteinase-7 and tissue inhibitors of metalloproteinase-1 in human prostate. J Urol 1998;160:1872–1876.

    PubMed  CAS  Google Scholar 

  17. Nawrocki B, Polette M, Marchand V, et al. Expression of matrix metalloproteinases and their inhibitors in human bronchopulmonary carcinomas: quantification and morphological analyses. Int J Cancer 1997;72:556–564.

    PubMed  CAS  Google Scholar 

  18. Bramhall SR. The matrix metalloproteinases and their inhibitors in pancreatic cancer. From molecular science to a clinical application. Int J Pancreatol 1997;21:1–12.

    PubMed  CAS  Google Scholar 

  19. Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 1997;89:1260–1270.

    PubMed  CAS  Google Scholar 

  20. Barsky SH, Siegal GP, Jannota F, et al. Loss of basement membrane components by invasive tumors but not by their benign counterparts. Lab Investig 1983;49:140–147.

    PubMed  CAS  Google Scholar 

  21. Liotta LA, Kleinerman J, Catanzaro P, et al. Degradation of basement membrane by murine tumor cells. J Natl Cancer Inst 1977;58:1427–1431.

    PubMed  CAS  Google Scholar 

  22. Bernhard EJ, Gruber SB, Muschel RJ, et al. Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc Natl Acad Sci USA 1994;91:4293–4297.

    PubMed  CAS  Google Scholar 

  23. Löhr M, Trautmann B, Göttler M, et al. Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins. Br J Cancer 1994;69:144–151.

    PubMed  Google Scholar 

  24. Gress TM, Müller-Pillasch F, Lerch MM, et al. Expression and in-situ localization of genes coding for extracellular matrix proteins and extracellular matrix degrading proteases in pancreatic cancer. Int J Cancer 1995;62:407–413.

    PubMed  CAS  Google Scholar 

  25. Chen WT. Membrane proteases: roles in tissue remodeling and tumor invasion. Curr Opin Cell Biol 1992;4:802–809.

    PubMed  CAS  Google Scholar 

  26. Zervos EE, Norman JG, Gower WR, et al. Matrix metalloproteinase inhibition attenuates human pancreatic cancer growth in vitro and decreases mortality and tumorigenesis in vivo. J Surg Res 1997;69:367–371.

    PubMed  CAS  Google Scholar 

  27. Wojtowicz-Praga S, Low J, Marshall J, et al. Phase I trial of a novel matrix metalloproteinase inhibitor batimastat (BB-94) in patients with advanced cancer. Investig New Drugs 1996;14:193–202.

    Google Scholar 

  28. Macaulay VM, O’Byrne KJ, Saunders MP, et al. Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions. Clin Cancer Res 1999;5:513–520.

    PubMed  CAS  Google Scholar 

  29. Beattie GJ, Smyth JF. Phase I study of intraperitoneal metalloproteinase inhibitor BB94 in patients with malignant ascites. Clin Cancer Res 1998;4:1899–1902.

    PubMed  CAS  Google Scholar 

  30. Wojtowicz-Praga S, Torri J, Johnson M, et al. Phase I trial of marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer. J Clin Oncol 1998;16:2150–2156.

    PubMed  CAS  Google Scholar 

  31. Rosemurgy A, Harris J, Langleben A, et al. Marimastat in patients with advanced pancreatic cancer. A dose-finding study. Am J Clin Oncol 1999;22:247–252.

    PubMed  CAS  Google Scholar 

  32. Dean DD, Martel-Pelletier JM, Pelletier JP, et al. Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Investig 1989;84:678–685.

    PubMed  CAS  Google Scholar 

  33. Bramhall SR, Rosemurgy A, Brown PD, et al. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. J Clin Oncol 2001;19:3447–3455.

    PubMed  CAS  Google Scholar 

  34. Fishman B, Pasternak S, Wallenstein SL, et al. The Memorial Pain Assessment Card. A valid instrument for the evaluation of cancer pain. Cancer 1987;60:1151–1158.

    PubMed  CAS  Google Scholar 

  35. Cella DF, Tulsky DS, Gray G, et al. The Functional Assessment of Cancer Therapy scale: development and validation of the general measure. J Clin Oncol 1993;11:570–579.

    PubMed  CAS  Google Scholar 

  36. Hess KR, Abbruzzese JL. Matrix metalloproteinase inhibition of pancreatic cancer: matching mechanism of action to clinical trial design. J Clin Oncol 2001;19:3445–3446.

    PubMed  CAS  Google Scholar 

  37. Rowinsky E, Humphrey R, Hammond LA, et al. Phase I and pharmacologic study of the specific matrix metalloproteinase inhibitor BAY 12-9566 on a protracted oral daily dosing schedule in patients with solid malignancies. J Clin Oncol 2000;18:178–186.

    PubMed  CAS  Google Scholar 

  38. Erlichman C, Adjei AA, Alberts SR, et al. Phase I study of the matrix metalloproteinase inhibitor, BAY 12-9566. Annals of Oncology 2001;12:389–395.

    PubMed  CAS  Google Scholar 

  39. Moore MJ, Hamm J, Eisenberg P, et al. A comparison between gemcitabine (gem) and the matrix metalloproteinase (mmp) inhibitor BAY 12-9566 (9566) in patients (pts.) with advanced pancreatic cancer. Proc Am Soc Clin Oncol 2000;19:240a.

    Google Scholar 

  40. Iannitti D, McKenna M, Pacha CM, et al. Marimastat following chemoradiation for locally advanced pancreatic cancer. Proc Am Soc Clin Oncol 2002;21:118b.

    Google Scholar 

  41. Dvorak HF, Brown LF, Detmar M, et al. Vascular permeability factor/vascular endothelial growth factor, microvascular hypermeability, and angiogenesis. Am J Pathol 1995;146:1029–1039.

    PubMed  CAS  Google Scholar 

  42. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocrinol Rev 1997;18:1–22.

    Google Scholar 

  43. Itakura J, Ishiwata T, Shen B, et al. Concomitant over-expression of vascular endothelial growth factor and its receptors in pancreatic cancer. Int J Cancer 2000;85:27–34.

    PubMed  CAS  Google Scholar 

  44. Ikeda N, Adachi M, Taki T, et al. Prognostic significance of angiogenesis in human pancreatic cancer. Br J Cancer 1999;79:1553–1563.

    PubMed  CAS  Google Scholar 

  45. Seo Y, Baba H, Fukuda T, et al. High expression of vascular endothelial growth factor is associated with liver metastasis and a poor prognosis for patients with ductal pancreatic adenocarcinoma. Cancer 2000;88:2239–2245.

    PubMed  CAS  Google Scholar 

  46. Presta LG, Chen H, O’Connor SJ, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 1997;57:4593–4599.

    PubMed  CAS  Google Scholar 

  47. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993;362:841–844.

    PubMed  CAS  Google Scholar 

  48. Gordon MS, Margolin K, Talpaz M, et al. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol 2001;19:843–850.

    PubMed  CAS  Google Scholar 

  49. Margolin K, Gordon MS, Holmgren E, et al. Phase Ib trial of intravenous recombinant humanized monoclonal antibody to vascular endothelial growth factor in combination with chemotherapy in patients with advanced cancer: pharmacologic and long-term safety data. J Clin. Oncol. 2001;19:851–856.

    PubMed  CAS  Google Scholar 

  50. Sledge G, Miller K, Novotny W, et al. A phase II trial of single-agent rhuMAb VEGF (recombinant humanized monocloncal antibody to vascular endothelial cell growth factor) in patients with relapsed metastatic breast cancer. Proc Am Soc Clin Oncol 2000;19:3a.

    Google Scholar 

  51. Kabbinavar F, Hurwitz HI, Fehrenbacher, L, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 2003;21:60–65.

    PubMed  CAS  Google Scholar 

  52. Devore RF, Fehrenbacher L, Herbst RS, et al. A randomized phase II trial comparing rhumab VEGF (recombinant humanized monoclonal antibody to vascular endothelial cell growth factor) plus carboplatin/paclitaxel (CP) to CP alone in patients with stage IIIB/IV NSCLC. Proc Am Soc Clin Oncol 2000;19:485a.

    Google Scholar 

  53. Grünewald K, Lyons J, Fröhlich A, et al. High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas. Int J Cancer 1989;43:1037–1041.

    PubMed  Google Scholar 

  54. End DW. Farnesyl protein transferase inhibitors and other therapies targeting the Ras signal transduction pathway. Investig New Drugs 1999;17:241–258.

    CAS  Google Scholar 

  55. Barbacid M. ras genes. Annu Rev Biochem 1987;56:779–827.

    PubMed  CAS  Google Scholar 

  56. Kato K, Cox AD, Hisaka MM, et al. Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc Natl Acad Sci USA 1992;89:6403–6407.

    PubMed  CAS  Google Scholar 

  57. Reiss Y, Goldstein JL, Seabra MC, et al. Inhibition of purified p21ras farnesyl: protein transferase by Cys-AAX tetrapeptides. Cell 1990;62:81–88.

    PubMed  CAS  Google Scholar 

  58. End DW, Smets G, Todd AV, et al. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res 2001;61:131–137.

    PubMed  CAS  Google Scholar 

  59. Liu M, Bryant MS, Chen J, et al. Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wap-ras transgenic mice. Cancer Res 1998;58:4947–4956.

    PubMed  CAS  Google Scholar 

  60. Whyte DB, Kirschmeier P, Hockenberry TN, et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 1997;272:14,459–14,464.

    CAS  Google Scholar 

  61. Rowinsky EK, Windle JJ, Von Hoff DD. Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J Clin Oncol 1999;17:3631–3652.

    PubMed  CAS  Google Scholar 

  62. Strickland CL, Weber PC, Windsor WT, et al. Tricyclic farnesyl protein transferase inhibitors: crystallographic and calorimetric studies of structure-activity relationships. J Med Chem 1999;42:2125–2135.

    PubMed  CAS  Google Scholar 

  63. Adjei AA, Erlichman C, Davis JN, et al. A phase I trial of the farnesyl transferase inhibitor SCH66336: evidence for biological and clinical activity. Cancer Res 2000;60:1871–1877.

    PubMed  CAS  Google Scholar 

  64. Zujewski J, Horak ID, Bol CK, et al. Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer. J Clin Oncol 2000;18:927–941.

    PubMed  CAS  Google Scholar 

  65. Hudes GR, Schol J, Baab J, et al. Phase I clinical and pharmacokinetic trial of the farnesyltransferase inhibitor R115777 on a 21-day dosing schedule. Proc Am Soc Clin Oncol 1999;18:156a.

    Google Scholar 

  66. Lersh C, Van Cutsem E, Amado R, et al. Randomized phase II study of SCH 66336 and gemcitabine in the treatment of metastatic adenocarcinoma of the pancreas. Proc Am Soc Clin Oncol 2001;20:153a.

    Google Scholar 

  67. Cohen SJ, Ho L, Ranganathan S, et al. Phase II and pharmacodynamic trial of the farnesyltransferase inhibitor R115777 as initial therapy in patients with metastatic pancreatic adenocarcinoma. J Clin Oncol, in press.

  68. Macdonald JS, Chansky K, Whitehead R, et al. A phase II study of farnesyl transferase inhibitor R115777 in pancreatic cancer. A Southwest Oncology Group (SWOG) study. Proc Am Soc Clin Oncol 2002;21:138a.

    Google Scholar 

  69. Patnaik A, Eckhardt S, Itzbicka E, et al. A phase I and pharmacokinetic (PK) study of the farnesyltransferase inhibitor R115777 in combination with gemcitabine (Gem). Proc Am Soc Clin Oncol 2000;19:2a.

    Google Scholar 

  70. Van Cutsem E, Karasek P, Oettle H, et al. Phase III trial comparing gemcitabine + R115777 (Zarnestra) versus gemcitabine + placebo in advanced pancreatic cancer (PC). Proc Am Soc Clin Oncol 2002;21:130a.

    Google Scholar 

  71. Kris MG, Miller VA. Inhibition of epidermal growth factor receptor tyrosine kinase: a concept now in the clinic. Am Soc Clin Oncol Ed Book 2001; 435–440.

  72. Ciardello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 2001;7:2958–2970.

    Google Scholar 

  73. Hackel PO, Zwick E, Prenzel N, et al. Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol 1999;11:184–189.

    PubMed  CAS  Google Scholar 

  74. Mendelsohn J. Blockade of receptors for growth receptors: anticancer therapy—the fourth annual Joseph H. Burchenal American Association for Cancer Research clinical research award lecture. Clin Cancer Res 2000;6:747–753.

    PubMed  CAS  Google Scholar 

  75. Lemoine NR, Hughes CM, Barton CM, et al. The epidermal growth factor receptor in human pancreatic cancer. J Pathol 1992;166:7–12.

    PubMed  CAS  Google Scholar 

  76. Abbruzzese JL, Rosenberg A, Xiong Q, et al. Phase II study of anti-epidermal growth factor receptor (EGFR) antibody cetuximab (IMC-C225) in combination with gemcitabine in patients with advanced pancreatic cancer. Proc Am Soc Clin Oncol 2001;20:130a.

    Google Scholar 

  77. Korc M, Chandrasekar B, Yamanaka Y, et al. Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. J Clin Investig 1992;90:1352–1360.

    PubMed  CAS  Google Scholar 

  78. Fan Z, Masui H, Altas I, et al. Blockade of epidermal growth factor receptor function by bivalent and monovalent fragments of 225 anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res 1993;53:4322–4328.

    PubMed  CAS  Google Scholar 

  79. Bruns CJ, Harbison MT, Davis DW, et al. Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin Cancer Res 2000;6:1936–1948.

    PubMed  CAS  Google Scholar 

  80. Baselga J, Pfister D, Cooper MR, et al. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol 2000;18:904–914.

    PubMed  CAS  Google Scholar 

  81. Akimoto T, Hunter NR, Buchmiller L, et al. Inverse relationship between epidermal growth factor receptor expression and radiocurability of murine carcinomas. Clin Cancer Res 1999;5:2884–2890.

    PubMed  CAS  Google Scholar 

  82. Milas L, Mason K, Hunter N, et al. In Vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin Cancer Res 2000;6:701–708.

    PubMed  CAS  Google Scholar 

  83. Robert F, Ezekiel MP, Spencer SA, et al. Phase I study of anti-epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J Clin Oncol 2001;19:3234–3243.

    PubMed  CAS  Google Scholar 

  84. Ciardiello F, Caputo R, Bianco R, et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 2001;7:1459–1465.

    PubMed  CAS  Google Scholar 

  85. Sirotnak FM, Zakowski MF, Miller VA, et al. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration by ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res 2000;6:4885–4892.

    PubMed  CAS  Google Scholar 

  86. Ransom M, Hammond LA, Ferry D, et al. ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol 2002;20:2240–2250.

    Google Scholar 

  87. Goss GD, Hirte H, Lorimer I, et al. Final results of the dose escalation phase of a phase I pharmacokinetics (pk), pharmacodynamic (pd), and biologic activity study of ZD1839: NCIC CTG Ind. 122. Proc Am Soc Clin Oncol 2001;20:85a.

  88. Moyer JD, Barbacci EG, Iwata KK, et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 1997;57:4838–4848.

    PubMed  CAS  Google Scholar 

  89. Pollack VA, Savage DM, Baker DA, et al. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J Pharmacol Exp Ther 1999;291:739–748.

    PubMed  CAS  Google Scholar 

  90. Hidalogo M, Siu LL, Nemunaitis J, et al. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J Clin Oncol 2001;19:3267–3279.

    Google Scholar 

  91. Akiyama T, Sudo C, Ogawara H, et al. The product of the human c-erbB-2 gene: a 185-kilodalton glycoprotein with tyrosine kinase activity. Science 1986;232:1644–1646.

    PubMed  CAS  Google Scholar 

  92. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against her2 for metastatic breast cancer that overexpresses Her2. N Engl J Med 2001;344:783–792.

    PubMed  CAS  Google Scholar 

  93. Day JD, Digiuseppe JA, Yeo C, et al. Immunohistochemical evaluation of her-2/neu expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasms. Hum Pathol 1996;27:119–124.

    Google Scholar 

  94. Hall PA, Hughes CM, Staddon SL, et al. The c-erbB-2 proto-oncogene in human pancreatic cancer. J Pathol 1990;161:195–200.

    PubMed  CAS  Google Scholar 

  95. Safran H, Steinhoff M, Mangray S, et al. Overexpression of the Her-2/neu oncogene in pancreatic adenocarcinoma. Am J Clin Oncol 2001;24:496–499.

    PubMed  CAS  Google Scholar 

  96. Kawesha A, Ghaneh P, Andrén-Sandberg A, et al. K-ras oncogene subtype mutations are associated with survival but not expression of p53, p16INK4A, p21WAF-1, cyclin D1, ERBB-2 and ERBB-3 in resected pancreatic ductal adenocarcinoma. Int J Cancer 2000;89:469–373.

    PubMed  CAS  Google Scholar 

  97. Novotny J, Vedralova, Kleibl Z, et al. C-erbB-2 expression and K-ras mutations in pancreatic cancer. Correlation with clinical course and pathological characteristics. Proc Am Soc Clin Oncol 2000;19:294a.

  98. Safran H, Ramanathan R, Schwartz J, et al. Herceptin and gemcitabine for metastatic pancreatic cancers that overexpress Her-2/neu. Proc Am Soc Clin Oncol 2001;20:130a.

    Google Scholar 

  99. Wolfe MM, Soll AH. Physiology of gastric acid secretion. N Engl J Med 1988;319:1707–1715.

    Article  PubMed  CAS  Google Scholar 

  100. Smith JP, Fantaskey AP, Liu G, et al. Identification of gastrin as a growth peptide in human pancreatic cancer. Am J Physiol 1995;268:R135-R141.

    PubMed  CAS  Google Scholar 

  101. Smith JP, Shih A, Wu Y, et al. Gastrin regulates growth of human pancreatic cancer in a tonic and autocrine fashion. Am J Physiol 1996;270:R1078-R1084.

    Google Scholar 

  102. Darro F, Camby I, Kruczynski A, et al. Characterisation of the influence of anti-gastrin, anti-epidermal growth factor, anti-oestradiol, and anti-luteinising hormone releasing hormone antibodies on the proliferation of 27 cell lines from the gastrointestinal tract. Gut 1995;36:220–230.

    PubMed  CAS  Google Scholar 

  103. Morris DL, Charnley RM, Ballantyne KC, et al. A pilot randomized control trial of proglumide (a gastrin receptor antagonist) in advanced colorectal cancer. Eur J Surg Oncol 1990;16:423–425.

    PubMed  CAS  Google Scholar 

  104. Harrison JD, Jones A, Morris DL. The effect of the gastrin receptor antagonist proglumide on survival in gastric carcinoma. Cancer 1990;66:1449–1452.

    PubMed  CAS  Google Scholar 

  105. Smith AM, Justin T, Michaeli D, et al. Phase I/II study of G17-DT, an anti-gastrin immunogen, in advanced colorectal cancer. Clin Cancer Res 2000;6:4719–4724.

    PubMed  CAS  Google Scholar 

  106. Watson SA, Michaeli D, Grimes S, et al. Gastrimmune raises antibodies that neutralize amidated and glycine-extended gastrin-17 and inhibit the growth of colon cancer. Cancer Res 1996;56:880–885.

    Google Scholar 

  107. Brett BT, Smith SC, Bouvier CV, et al. Phase II study of anti-gastrin-17 antibodies, rasied to G17DT, in advanced pancreatic cancer. J Clin Oncol 2002;20:4225–4231.

    PubMed  CAS  Google Scholar 

  108. Gilliam AD, Henwood D, Watson SA, et al. G17DT therapy may improve the survival of patients with advanced pancreatic carcinoma. Proc Am Soc Clin Oncol 2001;20:134a.

    Google Scholar 

  109. Watson SA, Gilliam AD, Grimes S, et al. Enhanced inhibition of pancreatic cancer by combination of the G17DT immunogen and gemcitabine. Proc Am Soc Clin Oncol 2002;21:10a.

    Google Scholar 

  110. Greten TF, Jaffee EM. Cancer vaccines. J Clin Oncol 1999;17:1047–1060.

    PubMed  CAS  Google Scholar 

  111. Laheru DA, Jaffee EM. Potential roles of tumor vaccines in GI malignancies. Oncology 2000;14:245–256.

    PubMed  CAS  Google Scholar 

  112. Strouss GJ, Deker J. Mucin-type glycoproteins. Crit Rev Biochem Mol Biol 1992;27:57–92.

    Google Scholar 

  113. Mukherjee P, Ginardi AR, Madsen CS, et al. Mice with spontaneous pancreatic cancer naturally develop MUC-1-specific CTLs that eradicate tumors when adoptively transferred. J Immunol 2000;165:3451–3460.

    PubMed  CAS  Google Scholar 

  114. Monges GM, Marie-Pierre A, Mathoulin-Portier, et al. Differential MUC 1 expression in normal and neoplastic human pancreatic tissue. An immunohistochemical study of 60 patients. Am J Clin Pathol 1999;112:635–640.

    PubMed  CAS  Google Scholar 

  115. Girling A, Bartkova J, Burchell J, et al. A core protein epitope of the polymorphic epithelial mucin detected by monoclonal antibody SM-3 is selectively exposed in a range of primary carcinomas. Int J Cancer 1989;43:1072–1076.

    PubMed  CAS  Google Scholar 

  116. Goydos JS, Elder E, Whiteside TL, et al. A phase I trial of synthetic mucin peptide vaccine. J Surg Oncol 1996;63:298–304.

    Google Scholar 

  117. Ramanathan RK, Lee K, McKolanis J, et al. Phase I study of a MUC-1 synthetic vaccine admixed with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Proc Am Soc Clin Oncol 2000;19:457a.

    Google Scholar 

  118. Weiss S, Bogen B. MHC-class-I-restricted presentation of intracellular antigen. Cell 1991;64:767–776.

    PubMed  CAS  Google Scholar 

  119. Gjertsen MK, Bjorheim J, Saeterdal I, et al. Cytotoxic CD4+ and CD8+ T lymphocytes, generated by mutant p21-ras (12 val) peptide vaccination of a patient, recognize 12val-dependent nested epitopes present within the vaccine peptide and kill autologous tumour cells carrying this mutation. Int J Cancer 1997;72:784–800.

    PubMed  CAS  Google Scholar 

  120. Gjertsen MK, Buanes T, Rosseland AR, et al. Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: clinical and immunological responses in patients with pancreatic adenocarcinoma. Int J Cancer 2001;92:441–450.

    PubMed  CAS  Google Scholar 

  121. Z’graggen K, Post S, Scheithauer W, et al. Ras peptide vaccination is a safe and immunologically effective treatment in patients with unresectable pancreatic cancer: results of a phase II study. Proc A, Soc Clin Oncol 2000;19:464a.

    Google Scholar 

  122. Toes REM, Blom RJJ, van der Voort E, et al. Protective antitumor immunity induced by immunization with completely allogeneic tumor cells. Cancer Res 1996;56:3782–3787.

    Google Scholar 

  123. Thomas MC, Greten TF, Pardoll DM, et al. Enhanced tumor protection by granulocyte-macrophage colony-stimulating factor expression at the site of an allogeneic vaccine. Human Gene Ther 1998;9:835–843.

    CAS  Google Scholar 

  124. Jaffee EM, Hruban RH, Biedrzycki B, et al. Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol 2001;19:145–156.

    PubMed  CAS  Google Scholar 

  125. Lyerly HK, Morse MA, Clay TM. Surrogate markers of effective anti-tumor immunity. Annals Surg Oncol 2001;8:190–191.

    CAS  Google Scholar 

  126. Rozenblum E, Schutte M, Goggins M, et al. Tumor suppressive pathways in pancreatic carcinoma. Cancer Res 1997;57:1731–1734.

    PubMed  CAS  Google Scholar 

  127. Caldas C, Hahn SA, da Costa LT, et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 1994;8:27–32.

    PubMed  CAS  Google Scholar 

  128. Schutte M, Hruban RH, Hedrick L, et al. DPC4 Gene in various tumor types. Cancer Res 1996;56:

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal J. Meropol M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, S.J., Meropol, N.J. Drug development in pancreatic cancer. Int J Gastrointest Canc 32, 91–106 (2002). https://doi.org/10.1385/IJGC:32:2-3:91

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IJGC:32:2-3:91

Key Words

Navigation