Skip to main content
Log in

Theoretical and experimental investigation of calcium-contraction coupling in airway smooth muscle

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We investigated theoretically and experimentally the Ca2+-contraction coupling in rat tracheal smooth muscle. [Ca2+]i, isometric contraction and myosin light chain (MLC) phosphorylation were measured in response to 1 mM carbachol. Theoretical modeling consisted in coupling a model of Ca2+-dependent MLC kinase (MLCK) activation with a four-state model of smooth muscle contractile apparatus. Stimulation resulted in a short-time contraction obtained within 1 min, followed by a long-time contraction up to the maximal force obtained in 30 min. ML-7 and Wortmannin (MLCK inhibitors) abolished the contraction. Chelerythrine (PKC inhibitor) did not change the short-time, but reduced the long-time contraction. [Ca2+ i responses of isolated myocytes recorded during the first 90 s consisted in a fast peak, followed by a plateau phase and, in 28% of the cells, superimposed Ca2+ oscillations. MLC phosphorylation was maximal at 5 s and then decreased whereas isometric contraction followed a Hill-shaped curve. The model properly predicts the time course of MLC phosphorylation and force of the short-time response. With oscillating Ca2+ signal, the predicted force does not oscillate. According to the model, the amplitude of the plateau and the frequency of oscillations encode for the amplitude of force, whereas the peak encodes for force velocity. The long-time phase of the contraction, associated with a second increase in MLC phosphorylation, may be explained, at least partially, by MLC phosphatase (MLCP) inhibition, possibly via PKC inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ay, B., Prakash, Y. S., Pabelick, C. M., and Sieck, G. C. (2004) Store-operated Ca2+ entry in porcine airway smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 286, L909-L917.

    Article  PubMed  CAS  Google Scholar 

  2. Hyvelin, J. M., Martin, C., Roux, E., Marthan, R. and Savineau, J. P. (2000) Human isolated bronchial smooth muscle contains functional ryanodine/caffeine-sensitive Ca-release channels. Am. J. Resp. Crit. Care Med. 162, 687–694.

    PubMed  CAS  Google Scholar 

  3. Kannan, M. S., Prakash, Y. S., Brenner, T., Mickelson, J. R. and Sieck, G. C. (1997) Role of ryanodine receptor channels in Ca2+ oscillations of porcine tracheal smooth muscle. Am. J. Physiol. 272, L659-L664.

    PubMed  CAS  Google Scholar 

  4. Liu, X. and Farley, J. M. (1996) Frequency modulation of acetylcholine-induced Ca(++)-dependent Cl-current oscillations are mediated by 1, 4, 5-trisphosphate in tracheal myocytes. J. Pharmacol. Exp. Ther. 277, 796–804.

    PubMed  CAS  Google Scholar 

  5. Kajita, J. and Yamaguchi, H. (1993) Calcium mobilization by muscarinic cholinergic stimulation in bovine single airway smooth muscle. Am. J. Physiol. 264, L496-L503.

    PubMed  CAS  Google Scholar 

  6. Nuttle, L. C. and Farley, J. M. (1996) Frequency modulation of acetylcholine-induced oscillations in Ca++ and Ca(++)-activated Cl-current by cAMP in tracheal smooth muscle. J. Pharmacol. Exp. Ther. 277, 753–760.

    PubMed  CAS  Google Scholar 

  7. Prakash, Y. S., Pabelick, C. M., Kannan, M. S., and Sieck, G. C. (2000) Spatial and temporal aspects of ACh-induced [Ca2+]i oscillations in porcine tracheal smooth muscle. Cell Calcium 27, 153–162.

    Article  PubMed  CAS  Google Scholar 

  8. Prakash, Y. S., Kannan, M. S., and Sieck, G. C. (1997) Regulation of intracellular calcium oscillations in porcine tracheal smooth muscle cells. Am. J. Physiol. 272, C966-C975.

    PubMed  CAS  Google Scholar 

  9. Roux, E., Guibert, C., Savineau, J. P., and Marthan, R. (1997) [Ca2+ i oscillations induced by muscarinic stimulation in airway smooth muscle cells: receptor subtypes and correlation with the mechanical activity. Br. J. Pharmacol. 120, 1294–1301.

    Article  PubMed  CAS  Google Scholar 

  10. Roux, E., Duvert, M. and Marthan, R. (2002) Combined effect of chronic hypoxia and in vitro exposure to gas pollutants on airway reactivity. Am. J. Physiol. Lung Cell Mol. Physiol. 283, L628-L635.

    PubMed  CAS  Google Scholar 

  11. Sims, S. M., Jiao, Y., and Zheng, Z. C. (1996) Intracellular calcium stores in isolated tracheal smooth muscle cells. Am. J. Physiol. 271, L300-L309.

    PubMed  CAS  Google Scholar 

  12. Bergner, A. and Sanderson, M. J. (2002) Acetylcholine-induced calcium signaling and contraction of airway smooth muscle cells in lung slices. J. Gen. Physiol. 119, 187–198.

    Article  PubMed  CAS  Google Scholar 

  13. Hyvelin, J. M., Roux, E., Prevost, M. C., Savineau, J. P. and Marthan, R. (2000) Cellular mechanisms of acrolein-induced alteration in calcium signaling in airway smooth muscle. Toxicol. Appl. Pharmacol. 164, 176–183.

    Article  PubMed  CAS  Google Scholar 

  14. Bergner, A. and Sanderson, M. J. (2002) ATP stimulates Ca2+ oscillations and contraction in airway smooth muscle cells of mouse lung slices. Am. J. Physiol. Lung Cell Mol. Physiol. 283, L1271-L1279.

    PubMed  CAS  Google Scholar 

  15. Roux, E. and Marhl, M. (2004) Role of sarcoplasmic reticulum and mitochondria in Ca2+ removal in airway myocytes. Biophys. J. 86, 2583–2595.

    PubMed  CAS  Google Scholar 

  16. Mounkaila, B., Marthan, R., and Roux, E. (2005) Biphasic effect of extracellular ATP on human and rat airways is due to multiple P2 purinoceptor activation. Resp. Res. 6, 143.

    Article  CAS  Google Scholar 

  17. Roux, E., Hyvelin, J. M., Savineau, J. P., and Marthan, R. (1998) Calcium signaling in airway smooth muscle cells is altered by in vitro exposure to the aldehyde acrolein. Am. J. Resp. Cell Mol. Biol. 19, 437–444.

    CAS  Google Scholar 

  18. Perez, J. F. and Sanderson, M. J. (2005) The frequency of calcium oscillations induced by 5-HT, ACH, and KCl determine the contraction of smooth muscle cells of intrapulmonary bronchioles. J. Gen. Physiol. 125, 535–553.

    Article  PubMed  CAS  Google Scholar 

  19. Somlyo, A. P. and Somlyo, A. V. (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: Modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325–1358.

    PubMed  CAS  Google Scholar 

  20. Somlyo, A. P. and Somlyo, A. V. (1994) Signal transduction and regulation in smooth muscle. Nature 372, 231–236.

    Article  PubMed  CAS  Google Scholar 

  21. Hirano, K., Derkach, D. N., Hirano, M., Nishimura, J., and Kanaide, H. (2003) Protein kinase network in the regulation of phosphorylation and dephosphorylation of smooth muscle myosin light chain. Mol. Cell Biochem. 248, 105–114.

    Article  PubMed  CAS  Google Scholar 

  22. Smith, P. G., Roy, C., Dreger, J., and Brozovich, F. (1999) Mechanical strain increases velocity and extent of shortening in cultured airway smooth muscle cells. Am. J. Physiol. Lung Cell Mol. Physiol. 277, L343-L348.

    CAS  Google Scholar 

  23. Ma, X., Cheng, Z., Kong, H., Wang, Y., Unruh, H., Stephens, N. L., and Laviolette, M. (2002) Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects. Am. J. Physiol. Lung Cell Mol. Physiol. 283, L1181-L1189.

    PubMed  CAS  Google Scholar 

  24. Fredberg, J. J. (2002) Airway narrowing in asthma: does speed kill? Am. J. Physiol. Lung Cell Mol. Physiol. 283, L1179-L1180.

    PubMed  CAS  Google Scholar 

  25. Hai, C. M. and Murphy, R. A. (1988) Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. Cell Physiol. 254, C99-C106.

    CAS  Google Scholar 

  26. Rembold, C. M. and Murphy, R. A. (1990) Latch-bridge model in smooth-muscle-[Ca-2+]i can quantitatively predict stress. Am. J. Physiol. 259, C251-C257.

    PubMed  CAS  Google Scholar 

  27. Yu, S. N., Crago, P. E., and Chiel, H. J. (1997) A nonisometric kinetic model for smooth muscle. Am. J. Physiol. Cell Physiol. 272, C1025-C1039.

    CAS  Google Scholar 

  28. Fredberg, J. J., Inoyue, D. S., Mijalovich, S. M., and Butler, J. P. (1999) Perturbed equilbrium of myosin binding in airway smooth muscle and its implications in bronchospasm. Am. J. Resp. Crit. Care Med. 159, 959–967.

    PubMed  CAS  Google Scholar 

  29. Rembold, C. M., Wardle, R. L., Wingard, C. J., Batts, T. W., Etter, E. F., and Murphy, R. A. (2004) Cooperative attachment of cross bridges predicts regulation of smooth muscle force by myosin phosphorylation. Am. J. Physiol. Cell Physiol. 287, C594-C602.

    Article  PubMed  CAS  Google Scholar 

  30. Fajmut, A., Brumen, M., and Schuster, S. (2005) Theoretical model of the interactions between Ca2+, calmodulin and myosin light chain kinase. FEBS Lett. 579, 4361–4366.

    Article  PubMed  CAS  Google Scholar 

  31. Fajmut, A., Dobovisek, A., and Brumen, M. (2005) Mathematical modeling of the relation between myosin phosphorylation and stress development in smooth muscles. J. Chem. Inf. Model 45, 1610–1615.

    Article  PubMed  CAS  Google Scholar 

  32. Kato, S., Osa, T., and Ogasawara, T. (1984) Kinetic model for isometric contraction in smooth muscle on the basis of myosin phosphorylation hypothesis. Biophys. J. 46, 35–44.

    PubMed  CAS  Google Scholar 

  33. Lukas, T. J. (2004) A signal transduction pathway model prototype I: from agonist to cellular endpoint. Biophys. J. 87, 1406–1416.

    Article  PubMed  CAS  Google Scholar 

  34. Fajmut, A., Jagodic, M., and Brumen, M. (2005) Mathematical modeling of the myosin light chain kinase activation. J. Chem. Inf. Model. 45, 1605–1609.

    Article  PubMed  CAS  Google Scholar 

  35. Roux, E. and Marhl, M. (2004) Role of sarcoplasmic reticulum and mitochondria in ca(2+) removal in airway myocytes. Biophys. J. 86, 2583–2595.

    Article  PubMed  CAS  Google Scholar 

  36. Teoh, H., Zacour, M., Wener, A. D., Gunaratnam, L., and Ward, M. E. (2003) Increased myofibrillar protein phosphatase-1 activity impairs rat aortic smooth muscle activation after hypoxia. Am. J. Physiol. Heart Circ. Physiol. 284, H1182-H1189.

    PubMed  CAS  Google Scholar 

  37. Shojo, H. and Kaneko, Y. (2001) Oxytocin-induced phosphorylation of myosin light chain is mediated by extracellular calcium influx in pregnant rat myometrium. J. Mol. Recognit. 14, 401–405.

    Article  PubMed  CAS  Google Scholar 

  38. Satpathy, M., Gallagher, P., Lizotte-Waniewski, M., and Srinivas, S. P. (2004) Thrombin-induced phosphorylation of the regulatory light chain of myosin II in cultured bovine corneal endothelial cells. Exp. Eye Res. 79, 477–486.

    Article  PubMed  CAS  Google Scholar 

  39. Geguchadze, R., Zhi, G., Lau, K. S., Isotani, E., Persechini, A., Kamm, K. E., and Stull, J. T. (2004) Quantitative measurements of Ca2+/calmodulin binding and activation of myosin light chain kinase in cells. FEBS Lett. 557, 121–124.

    Article  PubMed  CAS  Google Scholar 

  40. Van Lierop, J. E., Wilson, D. P., Davis, J. P., Tikunova, S., Sutherland, C., Walsh, M. P., and Johnson, J. D. (2002) Activation of smooth muscle myosin light chain kinase by calmodulin. Role of LYS30 and GLY40. J. Biol. Chem. 277, 6550–6558.

    Article  PubMed  CAS  Google Scholar 

  41. Button, L., Mireylees, S. E., Germack, R., and Dickenson, J. M. (2005) Phosphatidylinositol 3-kinase and ERK1/2 are not involved in adenosine A1, A2A or A3 receptor-mediated preconditioning in rat ventricle strips. Exp. Physiol. 90, 747–754.

    Article  PubMed  CAS  Google Scholar 

  42. Burdyga, T., Mitchell, R. W., Ragozzino, J., and Ford, L. E. (2003) Force and myosin light chain phosphorylation in dog airway smooth muscle activated in different ways. Resp. Physiol. Neurobiol. 137, 141–149.

    Article  CAS  Google Scholar 

  43. Ansari, H. R., Kaddour-Djebbar, I., and Abdel-Latif, A. A. (2004) Effects of prostaglandin F2alpha, latanoprost and carbachol on phosphoinositide turnover, MAP kinases, myosin light chain phosphorylation and contraction and functional existence and expression of FP receptors in bovine iris sphincter. Exp. Eye Res. 78, 285–296.

    Article  PubMed  CAS  Google Scholar 

  44. Hirano, K., Kanaide, H., and Nakamura, M. (1989) Effects of okadaic acid on cytosolic calcium concentrations and on contractions of the porcine coronary artery. Br. J. Pharmacol. 98, 1261–1266.

    PubMed  CAS  Google Scholar 

  45. Naline, E., Candenas, M. L., Palette, C., Moreau, J., Norte, M., Martin, J. D., Pays, M., and Advenier, C. (1994) Effects of okadaic acid on the human isolated bronchus. Eur. J. Pharmacol. 256, 301–309.

    Article  PubMed  CAS  Google Scholar 

  46. Neumann, J., Boknik, P., Herzig, S., Schmitz, W., Scholz, H., Gupta, R. C., and Watanabe, A. M. (1993) Evidence for physiological functions of protein phosphatases in the heart: evaluation with okadaic acid. Am. J. Physiol. 265, H257-H266.

    PubMed  CAS  Google Scholar 

  47. Yang, K. X. and Black, J. L. (1995) The involvement of protein kinase C in the contraction of human airway smooth muscle. Eur. J. Pharmacol. 275, 283–289.

    Article  PubMed  CAS  Google Scholar 

  48. Li, L., Eto, M., Lee, M. R., Morita, F., Yazawa, M., and Kitazawa, T. (1998) Possible involvement of the novel CPI-17 protein in protein kinase C signal transduction of rabbit arterial smooth muscle. J. Physiol. 508, 871–881.

    Article  PubMed  CAS  Google Scholar 

  49. Woodsome, T. P., Eto, M., Everett, A., Brautigan, D. L., and Kitazawa, T. (2001) Expression of CPI-17 and myosin phosphatase correlates with Ca(2+) sensitivity of protein kinase C-induced contraction in rabbit smooth muscle. J. Physiol. 535, 553–564.

    Article  PubMed  CAS  Google Scholar 

  50. Hai, C. M. and Szeto, B. (1992) Agonist-induced myosin phosphorylation during isometric contraction and unloaded shortening in airway smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 262, L53-L62.

    CAS  Google Scholar 

  51. Singer, H. A., Kamm, K. E., and Murphy, R. A. (1986) Estimates of activation in arterial smooth muscle. Am. J. Physiol. 251, C465–73.

    PubMed  CAS  Google Scholar 

  52. Saitoh, M., Ishikawa, T., Matsushima, S., Naka, M., and Hidaka, H. (1987) Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase. J. Biol Chem. 262, 7796–7801.

    PubMed  CAS  Google Scholar 

  53. Bai, Y. and Sanderson, M. J. (2006) Modulation of the Ca2+ sensitivity of airway smooth muscle cells in murine lung slices. Am. J. Physiol. Lung Cell Mol. Physiol. 291(2), L208-L221.

    Article  PubMed  CAS  Google Scholar 

  54. Hai, C.-M. and Kim, H. R. (2005) An expanded latchbridge model of protein kinase C-mediated smooth muscle contraction. J. Appl. Physiol. 98, 1356–1365.

    Article  PubMed  CAS  Google Scholar 

  55. Sieck, G. C., Han, Y.-S., Pabelick, C. M., and Prakash, Y. S. (2001) Temporal aspects of excitation-contraction coupling in airway smooth muscle. J. Appl. Physiol. 91, 2266–2274.

    PubMed  CAS  Google Scholar 

  56. Kasturi, R., Vasulka, C., and Johnson, J. (1993) Ca2+, caldesmon, and myosin light chain kinase exchange with calmodulin. J. Biol. Chem. 268, 7958–7964.

    PubMed  CAS  Google Scholar 

  57. Török, K. and Trentham, D. R. (1994) Mechanism of 2-chloro-(epsilon-amino-Lys75)-[6-[4-(N,N-diethylamino)phenyl]-1,3,5-triazin-4-yl]calmodulin interactions with smooth muscle myosin light chain kinase and derived peptides. Biochemistry 33, 12807–12820.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Roux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mbikou, P., Fajmut, A., Brumen, M. et al. Theoretical and experimental investigation of calcium-contraction coupling in airway smooth muscle. Cell Biochem Biophys 46, 233–251 (2006). https://doi.org/10.1385/CBB:46:3:233

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:46:3:233

Index Entries

Navigation