Skip to main content
Log in

Noncovalent labeling of proteins in capillary electrophoresis with laser-induced fluorescence detection

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Interest in the use of capillary electrophoresis (CE) as a tool for protein separations continues to grow. Additionally, laser-induced fluorescence (LIF) detection schemes promise ultrasensitive detection of small quantities of these important biomolecules following their separation. In most cases, LIF detection of proteins necessitates their prior derivatization with a fluorescent label molecule. To minimize the amount of additional sample handling and time associated with such labeling procedures, not to mention the sometimes-stringent pH and temperature controls they require, noncovalent labeling is presented as a viable alternative. This review article considers established methods for noncovalent labeling of proteins for their subsequent analysis by CE-LIF. Label molecules suitable for excitation and emission in the ultraviolet, visible, and near-infrared regions of the spectrum are enumerated for a variety of protein analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wehr, T., Rodriguez-Diaz, R., and Zhu, M. (1998) Capillary electrophoresis of proteins, Marcel Dekker, New York.

    Google Scholar 

  2. Khaledi, M. G., ed. (1998) High-performance Capillary Electrophoresis: Theory, Techniques and Applications, John Wiley & Sons, New York.

    Google Scholar 

  3. Landers, J. P., ed. (1997) Handbook of Capillary Electrophoresis, 2nd ed., CRC, Boca Raton, FL.

    Google Scholar 

  4. Guzman, N. A., ed. (2000) Capillary Electrophoresis Technology, Marcel Dekker, New York.

    Google Scholar 

  5. Banks, P. R. (1998) Fluorescent derivatization for low concentration protein analysis by capillary electrophoresis. TRAC 17, 612–622.

    CAS  Google Scholar 

  6. Liu, H., Cho, B.-Y., Strong, R., Krull, I. S., Cohen, S., Chan, K. C., and Issaq, H. J. (1999) Derivatization of peptides and small proteins for improved identification and detection in capillary zone electrophoresis (CZE). Anal. Chim. Acta 400, 181–209.

    Article  CAS  Google Scholar 

  7. Bardelmeijer, H. A., Lingeman, H., de Ruiter, C., and Underberg, W. J. M. (1998) Derivatization in capillary electrophoresis. J. Chromatogr. A 807, 3–26.

    Article  PubMed  CAS  Google Scholar 

  8. McTaylor, C. E. and Ewing, A. G. (1997) Critical review of recent developments in fluorescence detection for capillary electrophoresis. Electrophoresis 18, 2279–2290.

    Article  Google Scholar 

  9. Pentoney, S. L., Jr. and Sweedler, J. V. Optical detection techniques for capillary electrophoresis. In Handbook of Capillary Electrophoresis, 2nd ed. (Landers, J. P., ed.), CRC, Boca Raton, FL, pp. 379–423.

  10. Craig, D. B. and Dovichi, N. J. (1998) Multiple labeling of proteins. Anal. Chem. 70, 2493–2494.

    Article  CAS  Google Scholar 

  11. Edelman, G. M. and McClure, W. O. (1968) Fluorescent probes and the conformation of proteins. Accts. Chem. Res. 1, 65–70.

    Article  CAS  Google Scholar 

  12. Swaile, D. F. and Sepaniak, M. J. (1991) Laser-based fluorometric detection schemes for the analysis of proteins by capillary zone electrophoresis. J. Liq. Chromatogr. 14, 869–893.

    CAS  Google Scholar 

  13. Swaile, D. F., Copper, C. L., Sepaniak, M. J., Burton, D. E., and Powell, L. L. (1994) Use of fluorescent probe molecules for detection in capillary electrokinetic separations. Talanta 41, 1499–1505.

    Article  CAS  Google Scholar 

  14. Swaile, D. F. and Sepaniak, M. K. (1991) Determination of metal ions by CZE with on-column chelation using 8-hydroxyquinoline-5-sulfonic acid. Anal. Chem. 63, 179–184.

    Article  CAS  Google Scholar 

  15. Benito, I., Marina, M. L., Saz, J. M., and Diez-Masa, J. C. (1999) Detection of bovine whey proteins by on-column derivatization capillary electrophoresis with laser-induced fluorescence monitoring. J. Chromatogr. A 841, 105–114.

    Article  PubMed  CAS  Google Scholar 

  16. Colyer, C. L., Mangru, S. D., and Harrison, D. J. Microchip-based capillary electrophoresis of human serum proteins. J. Chromatogr. A 781, 271-276.

  17. Molecular Probes (1999) SYPRO Orange and Red Protein Gel Stains. Product Information.

  18. Steinberg, T. H., Jones, L. J., Haugland, R. P., and Singer, V. L. (1996) SYPRO Orange and SYPRO Red protein gel stains: one-step fluorescent staining of denaturing gels for detection of nanogram levels of protein. Anal. Biochem. 239, 223–237.

    Article  PubMed  CAS  Google Scholar 

  19. Steinberg, T. H., Haugland, R. P., and Singer, V. L. (1996) Applications of SYPRO Orange and SYPRO Red protein gel stains. Anal. Biochem. 239, 238–245.

    Article  PubMed  CAS  Google Scholar 

  20. Harvey, M. D., Bandilla, D., and Banks, P. R. (1998) Subnanomolar detection limit for sodium dodecyl sulfate capillary gel electrophoresis using a fluorogenic, noncovalent dye. Electrophoresis 19, 2169–2174.

    Article  PubMed  CAS  Google Scholar 

  21. Stockert, J. C. and Trigoso, C. I. (1994) Selective fluorescence reaction of indigocarmine stained eosinophil leucocyte granules induced by alkaline reduction of the bound dye to its leuco derivative. Acta Histochem. 96, 8–14.

    PubMed  CAS  Google Scholar 

  22. Farry, L., Oxspring, D. A., Smyth, W. F., and Marchant, R. (1997) A study of the effects of injection mode, on-capillary stacking and offline concentration on the capillary electrophoresis limits of detection for four structural types of industrial dyes. Anal. Chim. Acta 349, 221–229.

    Article  CAS  Google Scholar 

  23. Thompson, C. O. and Trenerry, V. C. (1995) Determination of synthetic colors in confectionery and cordials by micellar electrokinetic capillary chromatography. J. Chromatogr. A 704, 195–201.

    Article  CAS  Google Scholar 

  24. Masar, M., Kaniansky, D., and Madajova, V. (1996) Separation of synthetic food colourants by capillary zone electrophoresis in a hydrodynamically closed separation compartment. J. Chromatogr. A 724, 327–336.

    Article  CAS  Google Scholar 

  25. Moody, E. D., Viskari, P. J., and Colyer, C. L. (2000) Indigo carmine as a fluorescent label for protein analysis by capillary electrophoresis with laser-induced fluorescence detection. Proceedings of Pittcon 2000, New Orleans, LA: Abstract 1903P.

  26. Lam, K. S., Zhao, Z.-G., Wade, S., Krchňák, V., and Lebl, M. (1994) Identification of small peptides that interact specifically with a small organic dye. Drug Dev. Res. 33, 157–160.

    Article  CAS  Google Scholar 

  27. Higashijima, T., Fuchigami, T., Imasaka, T., and Ishibashi, N. (1992) Determination of amino acids by capillary zone electrophoresis based on semiconductor-laser fluorescence detection. Anal. Chem. 64, 711–714.

    Article  CAS  Google Scholar 

  28. Mank, A. J. G. and Yeung, E. S. (1995) Diode laser-induced fluorescence detection in capillary electrophoresis after precolumn derivatization of amino-acids and small peptides. J. Chromatogr. A 708, 309–321.

    Article  PubMed  CAS  Google Scholar 

  29. Chen, F.-T. A., Tusak, A., Pentoney, S., Jr., Konrad, K., Lew, C., Koh, E., and Sternberg, J. (1993) Semiconductor laser-induced fluorescence detection in capillary electrophoresis using a cyanine dye. J. Chromatogr. A 652, 355–360.

    Article  PubMed  CAS  Google Scholar 

  30. Patonay, G. and Antoine, M. D. (1991) Near-infrared fluorogenic labels: new approach to an old problem. Anal. Chem. 63, 321A-327A.

    CAS  Google Scholar 

  31. Barbier, F. and de Weerdt, G. A. (1964) Chromatography and I. R. spectrography of indocyanine green. Clin. Chim. Acta 10, 549–554.

    Article  PubMed  CAS  Google Scholar 

  32. Sauda, K., Imasaka, T., and Ishibashi, N. (1986) Determination of protein in human serum by high-performance chromatography with semiconductor laser fluorometric detection. Anal. Chem. 58, 2649–2653.

    Article  PubMed  CAS  Google Scholar 

  33. Sigma-Aldrich (1997) Technical literature.

  34. Yoneya, S., Saito, T., Komatsu, Y., Koyama, I., Takahashi, K., and Duvoll-Young, J. (1998) Binding properties of indocyanine green in human blood. IOVS 39, 1286–1290.

    CAS  Google Scholar 

  35. Fox, I. J. and Wood, E. H. (1960) Indocyanine green: physical and physiologic properties. Proc. Staff Meet., Mayo Clin. 35, 732–744.

    CAS  Google Scholar 

  36. Berridge, D. L. (1995) Indocyanine green dye as a tissue marker for localization of nonpalpable breast lesions. AJR 164, 1299.

    PubMed  CAS  Google Scholar 

  37. Van Den Biesen, P. R., Jongsma, F. H., Tangelder, G. J., and Slaaf, D. W. (1995) Yield of fluorescence from indocyanine green in plasma and flowing blood. Ann. Biomed. Eng. 23, 475–481.

    Article  PubMed  Google Scholar 

  38. Howe, L. J., Stanford, M. R., Whiston, R., Dewhirst, R., and Marshall, J. (1996) Angiographic abnormalities of experimental autoimmune uveoretinitis. Curr. Eye Res. 15, 1149–1155.

    PubMed  CAS  Google Scholar 

  39. Rappaport, P. L. and Thiessen, J. J. (1982) High-pressure liquid chromatographic analysis of indocyanine green. J. Pharm. Sci. 71, 157–161.

    Article  PubMed  CAS  Google Scholar 

  40. Svensson, C. K., Edwards, D. J., and Lalka, D. (1982) Comparison of chromatographic and spectrophotometric analysis of indocyanine green in plasma following administration of multiple doses to humans. J. Pharm. Sci. 71, 1305–1306.

    Article  PubMed  CAS  Google Scholar 

  41. Hollins, B., Noe, B., and Henderson, J. M. (1987) Fluorometric determination of indocyanine green in plasma. Clin. Chem. 33, 765–768.

    PubMed  CAS  Google Scholar 

  42. Soper, S. A., Mattingly, Q. L., and Legendre, B. L., Jr. (1994) Picosecond laser studies of the solvent-dependent nonradiative pathways in near-IR fluorescent dyes: implications on their use in ultrasensitive analysis. SPIE 2138, 216–227.

    Article  CAS  Google Scholar 

  43. Soper, S. A. and Mattingly, Q. L. (1994) Steady-state and picosecond laser fluorescence studies of nonradiative pathways in tricarbocyanine dyes: implications to the design of near-IR fluorochromes with high fluorescence efficiences. J. Am. Chem. Soc. 116, 3744–3752.

    Article  CAS  Google Scholar 

  44. Flanagan, J. H., Jr., Khan, S. H., Menchen, S., Soper, S. A., and Hammer, R. P. (1997) Functionalized tricarbocyanine dyes as near-infrared fluorescent probes for biomolecules. Bioconjug. Chem. 8, 751–756.

    Article  PubMed  CAS  Google Scholar 

  45. Imasaka, T., Nakagawa, H., Okazaki, T., and Ishibashi, N. (1990) Enzyme immunoassay of insulin by semiconductor laser fluorometry. Anal. Chem. 62, 2404–2405.

    Article  PubMed  CAS  Google Scholar 

  46. Baker, K. J. (1966) Binding of sulfobromophthalein (BSP) sodium and indocyanine green (ICG) by plasma α1-lipoproteins. Proc. Soc. Exp. Biol. Med. 122, 957–963.

    PubMed  CAS  Google Scholar 

  47. Williams, R. P., Lipowska, M., Patonay, G., and Strekowski, L. (1993) Comparison of covalent and noncovalent labeling with near-infrared dyes for the high-performance liquid chromatographic determination of human serum albumin. Anal. Chem. 65, 601–605.

    Article  PubMed  CAS  Google Scholar 

  48. Legendre, B. L., Jr. and Soper, S. A. (1996) Binding properties of near-IR dyes to proteins and separation of the dye/protein complexes using capillary electrophoresis with laser-induced fluorescence detection. Appl. Spec. 50, 1196–1202.

    Article  CAS  Google Scholar 

  49. Soper, S. A., Legendre, Jr., B. L., Flanagan, J. H., Jr., Williams, D. C., and Hammer, R. P. (1994) Ultrasensitive near-IR fluorescence detection in capillary zone electrophoresis. SPIE 2136, 244–254.

    Article  CAS  Google Scholar 

  50. Moody, E. D., Viskari, P. J., and Colyer, C. L. (1999) Non-covalent labeling of human serum albumin with indocyanine green: a study by capillary electrophoresis with diode laser-induced fluorescence detection. J. Chromatogr. B 729, 55–64.

    Article  CAS  Google Scholar 

  51. Wilberforce, D. A. and Patonay, G. (1990) Investigation of near-infrared laser-dye albumin complexes. Spectrochim. Acta A 46, 1153–1162.

    Article  Google Scholar 

  52. Davidson, Y. Y., Gunn, B. M., and Soper, S. A. (1996) Spectroscopic and binding properties of near-infrared tricarbocyanine dyes to double-stranded DNA. Appl. Spec. 50, 211–221.

    Article  CAS  Google Scholar 

  53. Flanagan, J. H., Legendre, B. L., Jr., Hammer, H. P., and Soper, S. A. (1995) Binary solvent effects in capillary zone electrophoresis with ultrasensitive near-IR fluorescence detection of related tricarbocyanine dyes and dye-labeled amino acids. Anal. Chem. 67, 341–347.

    Article  CAS  Google Scholar 

  54. Legendre, B. L., Jr., Moberg, D. L., Williams, D. C., and Soper, S. A. (1997) Ultrasensitive near-infrared laser-induced fluorescence detection in capillary electrophoresis using a diode laser and avalanche photodiode. J. Chromatogr. A 779, 185–194.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colyer, C. Noncovalent labeling of proteins in capillary electrophoresis with laser-induced fluorescence detection. Cell Biochem Biophys 33, 323–337 (2000). https://doi.org/10.1385/CBB:33:3:323

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1385/CBB:33:3:323

Index Entries