Skip to main content
Log in

Dietary titanium and infant growth

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Dietary titanium as TiO2+ improved animal growth during infancy while inhibiting the metabolism of intestinal bacteria. TiO2+ was also found capable of inhibiting human cytomegalovirus in tissue culture. These and other findings indicate TiO2+ improves infant growth by acting as an anti-bacterial and antiviral agent. The behavior of TiO2+ stands in contrast to that of TiO2, which is inert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Schroeder, W. H. Vinton, Jr., and J. J. Balassa, Effect of chromium, cadmium and other trace metals on the growth and survival of mice, J. Nutri 80, 39–47 (1963).

    CAS  Google Scholar 

  2. H. A. Schroeder, J. J. Balassa, and W. H. Vinton, Jr., Chromium, lead, cadmium, nickel and titanium in mice: effect on mortality, tumors and tissue levels. J. Nutri 83, 239–250 (1964).

    CAS  Google Scholar 

  3. B. Nagy, I. Pais, and J. Bokori, The application of titaniumchelate in pig feeding, 5th Spurenelement Syymposium der Karl-Marx-Universiteat Leipzing und der Friedrich-Schiller-Universiteat, Jena (1986), pp. 1254–1259.

  4. S. Yaghoubi, C. W. Schwietert, and J. P. McCue, Biological roles of titanium, Biol Trace Element Res. 78, 205–218 (2000).

    Article  CAS  Google Scholar 

  5. B. Duffy, C. Schwietert, A. France, N. Mann, K. Culbertson, B. Harmon, et al., Transition metals as protease inhibitors, Biol. Trace Element Res. 64, 197–213 (1998).

    CAS  Google Scholar 

  6. P. Chen, H. Tsuge, R. J. Almassy, C. L. Gribskov, S. Katoh, D. L. Vanderpool, et al., Structure of the human cytomegalovirus protease catalytic domain reveals a novel serine protease fold and catalytic triad, Cell 86, 835–843 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. US Public Health Service, Guide for the Care and Use of Laboratory Animals, U. S. Public Health Service, US GPO, Washington, DC (1996).

    Google Scholar 

  8. C. F. Baes, Jr. and R. E. Mesmer, The Hydrolysis of Cations, Wiley, New York, Chap. 8 (1976).

    Google Scholar 

  9. J. J. McSharry, Flow cytometric analysis of virus infected cells, Res. Adv. Microbiol. 1, 37–42 (2000).

    Google Scholar 

  10. J. J. McSharry, Antiviral drug susceptibility assays: going with the flow, Antiviral Res. 43, 1–21 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. J. J. McSharry, Flow cytometric antiviral drug susceptibility assays, Clin. Immunol. Newslett. 19, 1–14 (1999).

    Article  Google Scholar 

  12. J. J. McSharry, N. S. Lurain, G. L. Drusano, A. Landay, M. Nokta, M. O’Gorman, et al., Rapid ganciclovir susceptibility assay using flow cytometry for human cytomegalovirus clinical isolates, Antimicrob. Agents Chemother. 42, 2326–2331 (1998).

    PubMed  CAS  Google Scholar 

  13. J. J. McSharry, N. S. Lurain, G. L. Drusano, A. Landay, J. Manischewitz, M. Nokta, et al., Flow cytometric determination of ganciclovir susceptibility of human cytomegalovirus clinical isolates, J. Clin. Microbiol. 36, 958–964 (1998).

    PubMed  CAS  Google Scholar 

  14. J. J. McSharry, Uses of flow cytometry in virology, Clin. Microbiol. Rev. 7, 576–604 (1994).

    PubMed  CAS  Google Scholar 

  15. W. K. Nelson, Titanium gluconate, US Patent 2,227,508 (1941).

  16. C. S. Crumpacker, Ganciclovir, N. Engl. J. Med. 335, 721–729 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. H. M. Shapiro, Practical Flow Cytometry, 3rd ed., Wiley-Liss, New York (1995).

    Google Scholar 

  18. C. W. Schwietert and J. P. McCue, Coordination compounds in medicinal chemistry, Coordination Chemistry Revuews 184, 67–89 (1999).

    Article  CAS  Google Scholar 

  19. T. Coulton, Statistics in Medicine, Little, Brown & Co, Boston (1976).

    Google Scholar 

  20. T. Mitsuoka, Intestinal Bacteria and Health, Harcourt Brace Jovanovich, Japan, Tokyo, p. 98–105 (1978)

    Google Scholar 

  21. G. R. Gibson and M. B. Roberfroid, Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics, J. Nutr. 125, 1401–1412 (1995).

    PubMed  CAS  Google Scholar 

  22. A. F. Tawfik, M. A. Ramadan, and A. M. Shibl, Inhibition of motility and adherence of Proteus mirabilis to uroepithelial cells by subinhibitory concentrations of amikacin, Chemotherapy 43, 424–429 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. P. C. Braga, M. T. Sala, and M. D. Sasso, Pharmacodynamic effects of subinhibitory concentrations of rufloxacin on bacterial virulence factors, Antimicrob. Agents Chemother. 43, 1013–1019 (1999).

    PubMed  CAS  Google Scholar 

  24. S. Moens and J. Vanderleyden, Functions of bacterial flagella, Crit. Rev. Microbiol. 22, 67–100 (1996).

    PubMed  CAS  Google Scholar 

  25. S. Gupta and R. Chowdhury, Bile affects production of virulence factors and motility of Vibrio cholerae, Infect. Immun. 65, 1131–1134 (1997).

    PubMed  CAS  Google Scholar 

  26. C. L. Gardel and J. J. Mekalanos, Alterations in vibrio cholerae motility phenotypes correlate with changes in virulence factor expression, Infect. Immun. 64, 2246–2255 (1996).

    PubMed  CAS  Google Scholar 

  27. S. Stago, R. F. Pass, G. Cloud, W. J. Britt, R. F. Henderson, P. D. Walton, et al., Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus and clinical outcome, JAMA 256, 1904–1908 (1986).

    Article  Google Scholar 

  28. A. K. Deori, S. Broor, R. S. Maitreyi, D. Agarwal, H. Kumar, V. K. Paul, et al., Incidence, clinical spectrum and outcome of intrauterine infections in neonates, J. Trop. Pediatr. 46, 155–159 (2000).

    Article  Google Scholar 

  29. V. Grebennikov, V. R. Soroka, and E. V. Sabadash, Trace elements content in milk of animals and man, Voprosy Pitaniia (Moscow) 22, 87–88 (1963).

    CAS  Google Scholar 

  30. S. Lembrych, K. Lorenz, and R. Kelm, Further studies on the presence and concentration of trace elements in human milk in the Opole region, Ginekology Polska 58, 98–102 (1987).

    CAS  Google Scholar 

  31. N. Lavi and Z. B. Alfassi, Determination of trace amounts of cadmium, cobalt, chromium, iron, molybdenum, nickel, selenium, titanium, vanadium and zinc in blood and milk by neutron activation analysis, Analyst 115, 817–822 (1990).

    Article  PubMed  CAS  Google Scholar 

  32. R. R. Anderson, Comparison of trace elements in milk of four species, J. Dairy Sci. 75, 3050–3055 (1992).

    Article  PubMed  CAS  Google Scholar 

  33. D. Amarasiriwardena, M. Kotrebai, A. Krushevska, and R. M. Barnes, Multielement analysis of human milk by inductively coupled plasma mass and atomic emission spectrometry after high pressure, high temperature digestion, Can. J. Anal. Sci. Spectrosc. 42, 69–78 (1997).

    CAS  Google Scholar 

  34. J. Barskdale, Titanium: Its Occurrence, Chemistry and Technology, 2nd ed. Ronald, New York, Chap. 2 (1966).

    Google Scholar 

  35. M. C. Neville, P. Zhang, and J. C. Allen, Minerals, ions and trace elements in milk, in Handbook of Milk Composition, R. G. Jensen, ed., Academic, New York, Chap. 7 (1995).

    Google Scholar 

  36. C. G. Victora, P. G. Smith, J. P. Vaugham, L. C. Nobre, C. Lombardi, A. M. Teixeira, et al., Infant feeding and deaths due to diarrhea. A case-control study, Am. J. Epidemiol. 129, 1032–1041 (1989).

    PubMed  CAS  Google Scholar 

  37. L. J. Mata and J. J. Urrutia, Infections and infectious diseases in an malnourished population: a long term prospective field study XIII, Symposium of the Swedish Nutrition Foundation (1977), pp. 42–57

  38. A. Ashworth, S. R. Allen, and G. A. Fookes, Infant and young child feeding: an annotated bibliography, Early Hum. Dev. 16, S1-S165 (1982).

    Article  Google Scholar 

  39. A. S. Goldman and R. M. Goldblum, Defense agents in human milk, in Handbook of Milk Composition, R. G. Jensen, ed., Academic, New York, Chap. 9 (1995).

    Google Scholar 

  40. B. A. Wharton, S. E. Blamer, and M. F. Noy, Food and microbiological problems in the newborn: data and practice, Acta Paediatr. 405 (Suppl.), 29–34 (1994).

    CAS  Google Scholar 

  41. S. Stephens, J. M. Dolby, J. Montreuil, and G. Spik, Differences in inhibition of the growth of commensal and enteropathogenic strains or Escherichia coli by lactotransferrin and secretory immunoglobulin A isolate from human milk, Immunology 41, 594–603 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwietert, C.W., Yaghoubi, S., Gerber, N.C. et al. Dietary titanium and infant growth. Biol Trace Elem Res 83, 149–167 (2001). https://doi.org/10.1385/BTER:83:2:149

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:83:2:149

Index Entries

Navigation