Skip to main content
Log in

Clinical laboratory parameters in osteoarthritic knee-joint effusions correlated to trace element concentrations

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Interactions of clinical laboratory parameters with trace elements in knee-joint effusions might turn out to be potential diagnostic tool, increasing our pathophysiological understanding and knowledge on knee-joint effusions. Thus, the 11 clinical laboratory parameters, total protein, albumin, glucose, lactate dehydrogenase, uric acid, pH, rheumatoid factor, antistreptolysin, C-reactive protein, leukocyte, and erythrocyte counts were determined in 39 osteoarthritic knee-joint effusions and in corresponding sera. Additionally, concentrations of the 17 trace elements barium, beryllium, calcium, cadmium, cesium, copper, lanthanum, lithium, magnesium, molybdenum, lead, rubidium, antimony, tin, strontium, thallium, and zinc in both effusions and corresponding sera were quantified by inductively coupled plasma-mass spectrometry. Concentrations of most laboratory parameters in synovial fluid were within the normal ranges for serum. However, concentrations of total protein and albumin in effusions were distinctly lower than in sera of healthy adults. Results for rheumatoid factor, antistreptolysin, and C-reactive protein in the effusions were below their corresponding threshold values for serum. An indicator for inflammation, the leukocyte count had a median < 6.3 G/L. The erythrocyte count (median: < 0.06 T/L) revealed a very low presence of red blood cells in the effusions. Total protein concentrations and lactate dehydrogenase activity in the effusions correlated positively with effusion copper (r=0.61 and 0.66) and effusion zinc (r=0.71 and 0.49). For cesium, a negative correlation in both sera (r=−0.44) and effusions (r=−0.44) with LDH activity could be established. Concentrations of rubidium, strontium, and cesium responded to albumin concentrations in sera and in effusions, establishing an inverse correlation. All other trace elements showed no or only weak associations with the clinical laboratory parameters determined. Although distinct relationships between trace element concentrations and clinical laboratory parameters in knee-joint effusions exist, the clinical relevance of these findings needs to be further elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Mc Gahan and H. Shoji, Knee effusions, J. Fam. Pract. 4(1), 141–144 (1977).

    CAS  Google Scholar 

  2. R. Manduchi and A. Pizzoferrato, Synovial fluid in arthropathy, Chir. Org. Mov. 76(3), 255–262 (1991).

    CAS  Google Scholar 

  3. M. E. Schweitzer, A. Falk, D. Berthoty, M. Mitchell, and D. Resnick, Knee effusion: normal distribution of fluid, Am. J. Roentgenol. 159(2), 361–363 (1992).

    CAS  Google Scholar 

  4. S. P. Blau, The synovia fluid, Orthop. Clin. North Am. 10(1), 21–35 (1979).

    PubMed  CAS  Google Scholar 

  5. C. Steffen, Untersuchungen des Synovialpunktates, in Praktische Rheumatologie, Diagnostisch-therapeutische Empfehlungen der Öterreichischen Rheumaliga, 2nd ed., pp. 253–257 (1984).

  6. H. L. F. Currey and B. Vernon-Roberts, Examination of synovial fluid, Clin. Rheum. Dis. 2, 149–176 (1976).

    CAS  Google Scholar 

  7. M. Krachler, W. Domej, and K. J. Irgolic, Concentrations of trace elements in osteoarthritic knee-joint effusions, Biol. Trace Element Res. 75, 253–263 (2000).

    Article  CAS  Google Scholar 

  8. M. Krachler and W. Domej, Interactions of trace elements in osteoarthritic knee-joint effusions and in corresponding sera, Trace Elem. Electrolytes 17, 124–133 (2000).

    CAS  Google Scholar 

  9. M. Krachler, G. Wirnsberger, and K. J. Irgolic, Trace element status of hemodialyzed patients, Biol. Trace Element Res. 58, 209–221 (1997).

    Article  CAS  Google Scholar 

  10. M. Krachler, A. Alimonti, F. Petrucci, F. Forastiere, and S. Caroli, Influence of sample pretreatment on the determination of trace elements in urine by inductively coupled plasma mass spectrometry, J. Anal. Atomic Spectrom. 13, 701–706 (1998).

    Article  CAS  Google Scholar 

  11. W. Domej, M. Krachler, C. Schlagenhaufen, M. Trinker, G. J. Krejs, and K. J. Irgolic, Trace elements in pleural effusions, J. Trace Elements Med. Biol. 11, 232–238 (1997).

    CAS  Google Scholar 

  12. M. Krachler, H. Scharfetter, and G. H. Wirnsberger, Exchange of alkali trace elements in hemodialysis patients: a comparison with Na+ and K+, Nephron 83, 226–236 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. M. Krachler, E. Rossipal, and D. Micetic-Turk, Trace element transfer from the mother to the newborn—investigations on triplets of colostrum, maternal and umbilical cord sera, Eur. J. Clin. Nutr. 53, 486–494 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. R. W. Light, M. I. Mc Gregor, and P. C. Luchsinger, Pleural effusions: the diagnostic separation of transudates from exudates, Ann. Intern. Med. 77, 507–513 (1972).

    PubMed  CAS  Google Scholar 

  15. W. Domej, M. Krachler, W. Goessler, A. Maier, and K. J. Irgolic, Concentration of copper, zinc, manganese, rubidium, and magnesium in thoracic empyemata and sera, Biol. Trace Element Res. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krachler, M., Domej, W. Clinical laboratory parameters in osteoarthritic knee-joint effusions correlated to trace element concentrations. Biol Trace Elem Res 79, 139–148 (2001). https://doi.org/10.1385/BTER:79:2:139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:79:2:139

Index Entries

Navigation