Skip to main content
Log in

Differential effects of dietary selenium (Se) and folate on methyl metabolism in liver and colon of rats

  • Accelerated Article
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A previous study compared the effects of folate on methyl metabolism in colon and liver of rats fed a selenium-deficient die (<3 μg Se/kg) to those of rats fed a diet containing supranutritional Se (2 mg selenite/kg). The purpose of this study was to investigate the effects of folate and adequate Se (0.2 mg/kg) on methyl metabolism in colon and liver. Weanling, Fischer-344 rats (n=8/diet) were fed diets containing 0 or 0.2 mg selenium (as selenite)/kg and 0 or 2 mg folic acid/kg in a 2×2 design. After 70 d, plasma homocysteine was increased (p<0.0001) by folate deficiency; this increase was markedly, attenuated (p<0.0001) in rats fed the selenium-deficient diet compared to those fed 0.2 mg Se/kg. The activity of hepatic glycine N-methyltransferase (GNMT), an enzyme involved in the regulation of tissue S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), was increased by folate deficiency (p<0.006) and decreased by selenium deprivation, (p<0.0003). Colon and liver SAH were highest (p<0.006) in rats fed deficient folate and adequate selenium. Although folate deficiency decreased liver SAM (p<0.001), it had no effect on colon SAM. Global DNA methylation was decreased (p<0.04) by selenium deficiency in colon but not liver; folate had no effect. Selenium, deficiency did not affect DNA methyltransferase (Dnmt) activity in liver but tended to decrease (p<0.06) the activity of the enzyme in the colon. Dietary folate did not affect liver or colon Dnmt. These results in rats fed adequate selenium are similar to previous results found in rats fed supranutritional selenium. This suggests that selenium deficiency appears to be a more important modifier of methyl metabolism than either adequate or supplemental selenium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. D. Davis, and J. W. Finley, in Functional Foods and Nutraceuticals in Cancer Prevention, R. R. Watson, ed. Iowa State Press, Ames, 2003, pp. 55–85.

    Google Scholar 

  2. H. E. Ganther, Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase, Carcinogenesis, 20, 1657–1666 (1999).

    Article  PubMed  CAS  Google Scholar 

  3. C. Ip, Y. Dong, and H. E. Ganther, New concepts in selenium chemoprevention, Cancer Metastasis Rev., 21, 281–289 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. J. Lu, and C. Jiang, Antiangiogenic activity of selenium in cancer chemoprevention: metabolite-specific effects, Nutr. Cancer, 40, 64–73 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. G. F. Combs, Jr., Chemopreventive mechanisms of selenium, Med Klin, 94 (Suppl 3), 18–24 (1999).

    Article  Google Scholar 

  6. C. D. Davis, E. O. Uthus, and J. W. Finley, Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon, J. Nutr., 130, 2903–2909 (2000).

    PubMed  CAS  Google Scholar 

  7. E. S. Fiala, M. E. Staretz, G. A. Pandya, K. El-Bayoumy, and S. R. Hamilton, Inhibtion of DNA cytosine methyltransferase by chemopreventive selenium compounds, determined by an improved assay for DNA cytosine methyltransferase and DNA cytosine methylation, Carcinogenesis, 19, 597–604 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. Y. I. Kim, Folate, colorectal carcinogenesis, and DNA methylation: lessons from animal studies, Environ. Mol. Mutagen., 44, 10–25 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. S. W. Choi, and J. B. Mason, Folate and carcinogenesis: an, integrated scheme, J. Nutr. 130, 129–132 (2000).

    PubMed  CAS  Google Scholar 

  10. C. La Vecchia, E. Negri, C. Pelucchi, and S. Franceschi, Dietary folate and colorectal cancer, Int. J. Cancer, 102, 545–547 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. C. D. Davis, and E. O. Uthus, Dietary folate and selenium affect dimethylhydrazineinduced aberrant crypt formation, global DNA methylation and one-carbon metabolism in rats. J. Nutr., 133, 2907–2914 (2003).

    PubMed  CAS  Google Scholar 

  12. P. G. Reeves, Components of the AIN-93 diets as improvements in the AIN-76A diet, J. Nutr., 127, 838S-841S (1997).

    PubMed  CAS  Google Scholar 

  13. J. P. Issa, P. M. Vertino, J. Wu, et al., Increased cytosine DNA-methyltransferase activity during colon cancer progression, J. Natl. Cancer Inst., 85, 1235–1240 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. J. Wagner, N. Claverie, and C. Danzin, A rapid high-performance liquid chromatographic procedure for the simultaneous determination of methionine, ethionine, S-adenosylmethionine, S-adenosylethionine, and the natural polyamines in rat tissues, Anal. Biochem., 140, 108–116 (1984).

    Article  PubMed  CAS  Google Scholar 

  15. G. L. Cantoni, in Methods in Enzymology, Vol. II, S. P. Colowick and N. O. Kaplan, eds., Academic Press, New York, 1955, pp. 254–256.

    Chapter  Google Scholar 

  16. E. O. Uthus, Simultaneous detection of S-adenosylmethionine and S-adenosylhomocysteine in mouse and rat tissues by capillary electrophoresis, Electrophoresis, 24, 1221–1226 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. R. J. Cook, and C. Wagner, Glycine N-methyltransferase is a folate, binding protein of rat liver cytosol, Proc Natl Acad Sci USA, 81, 3631–3634 (1984).

    Article  PubMed  CAS  Google Scholar 

  18. R. J. Cook, D. W. Horne, and C. Wanger, Effect of dietary methylgroup, deficiency on one-carbon metabolism in rats. J. Nutr., 119, 612–617 (1989).

    PubMed  CAS  Google Scholar 

  19. P. Durand, L. J. Fortin, S. Lussier-Cacan, J. Davignon, and D. Blache, Hyperhomocysteinemia induced by folic acid deficiency and methionine load—applications of a modified HPLC method, Clin. Chim. Acta, 252, 83–93 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. D. Paglia, and W. Valentine, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J. Lab. Clin. Med., 70, 158–169 (1967).

    PubMed  CAS  Google Scholar 

  21. A. Holmgren, and M. Bjornstedt, Thioredoxin and thioredoxin reductase, Methods Enzymol. 252, 199–208 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. K. E. Hill, G. W. McCollum, and R. F. Burk, Determination of thioredoxin reductase activity in rat liver supernatant Anal. Biochem., 253, 123–125 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. M. J. Bunk, and G. F. Combs, Jr., Evidence for an impairment in the conversion of methionine to cysteine in selenium-deficient chick, Proc. Soc. Exp. Biol. Med., 167, 87–93 (1981).

    PubMed  CAS  Google Scholar 

  24. K. M. Halpin, and D. H. Baker, Selenium deficiency and transsulfuration in the chick, J. Nutr. 114, 606–612 (1984).

    PubMed  CAS  Google Scholar 

  25. K. E. Hill, and R. F. Burk, Effect of selenium deficiency and vitamin E deficiency on glutathione metabolism in isolated rat hepatocytes, J. Biol. Chem., 257, 10668–10672 (1982).

    PubMed  CAS  Google Scholar 

  26. K. E. Hill, and R. F. Burk, Effect of selenium deficiency on the disposition of plasma glutathione, Arch. Biochem. Biophys., 240, 166–171 (1985).

    Article  PubMed  CAS  Google Scholar 

  27. K. E. Hill, R. F. Burk, and J. M. Lane, Effect of selenium depletion and repletion on plasma glutathione and glutathione-dependent enzymes in the rat. J. Nutr., 117, 99–104 (1987).

    PubMed  CAS  Google Scholar 

  28. K. E. Hill, M. A. Taylor, and R. F. Burk, Influence of selenium deficiency on glutathione disulfide metabolism in isolated perfused rat heart, Biochim. Biophys. Acta., 923, 431–435 (1987).

    PubMed  CAS  Google Scholar 

  29. E. O. Uthus, K. Yokoi, and C. D. Davis, Selenium deficiency in Fisher-344 rats decreases plasma and tissue homocysteine concentrations and alters plasma homocysteine and cysteine redox status, J. Nutr., 132, 1122–1128 (2002).

    PubMed  CAS  Google Scholar 

  30. C. D. Davis, and E. O. Uthus, Dietary selenium and azadeoxycytidine treatment affect dimethylhydrazine-induced aberrant crypt formation in rat colon and DNA methylation in HT-29 cells, J. Nutr., 132, 292–297 (2002).

    PubMed  CAS  Google Scholar 

  31. B. Richardson, and R. Yung, Role of DNA methylation in the regulation of cell function, J. Lab. Clin. Med. 134, 333–340 (1999).

    Article  PubMed  CAS  Google Scholar 

  32. C. D. Davis, and E. O. Uthus, DNA methylation, cancer susceptibility, and nutrient interactions, Exp. Biol. Med. (Maywood) 229, 988–995 (2004).

    CAS  Google Scholar 

  33. J. D. Finkelstein, Pathways and regulation of homocysteine metabolism in mammals, Sem. Thromb. Hemost. 26, 219–225 (2000).

    Article  CAS  Google Scholar 

  34. C. Wagner, W. T. Briggs, and R. J. Cook, Inhibition of glycine, N-methyltransferase activity by folate derivatives: implications for regulation of methyl group metabolism, Biochem. Biophys. Res. Common., 127, 746–752 (1985).

    Article  CAS  Google Scholar 

  35. F. M. Loehrer, W. E. Haefeli, C. P. Angst G. Browne G. Frick and B. Fowler, Effect of methionine loading on 5-methyltetrahydrofolate, S-adenosylmethionine and S-adenosylhomocysteine in plasma of healthy humans, Clin. Sci. (Colch.), 91, 79–86 (1996).

    CAS  Google Scholar 

  36. K. Aida, M. Tawata, M. Negishi, and T. Onaya, Mouse glycine N-methyltransferase is sexually dimorphic and regulated by growth hormone, Horm. Metab. Res., 29, 646–649 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. H. Ogawa, T. Gomi, F. Takusagawa, and M. Fujioka, Structure, function and physiological role of glycine N-methyltransferase, Int. J. Biochem. Cell. Biol., 30, 13–26 (1998).

    Article  PubMed  CAS  Google Scholar 

  38. M. Balaghi, D. W. Horne, and C. Wagner, Hepatic one-carbon metabolism in early folate deficiency in rats, Biochem. J., 291 (Pt1), 145–149 (1993).

    PubMed  CAS  Google Scholar 

  39. E. J. Yeo, and C. Wagner, Tissue distribution of glycine N-methyltransferase, a major folate-binding protein of liver, Proc. Nalt. Acad. Sci. USA, 91, 210–214 (1994).

    Article  CAS  Google Scholar 

  40. J. W. Finley, C. D. Davis, and Y. Feng, Selenium from high selenium broccoli protects rats from colon cancer, J Nutr 130, 2384–9 (2000).

    PubMed  CAS  Google Scholar 

  41. H. H. Liu, K. H. Chen, Y. P. Shih, W. Y. Lui, F. H. Wong, and Y. M. Chen, Characterization of reduced expression of glycine N-methyltransferase in cancerous hepatic tissues using two newly developed monoclonal antibodies, J. Biomed. Sci. 10, 87–97 (2003).

    Article  PubMed  Google Scholar 

  42. J. E. Heady, and S. J. Kerr, Alteration of glycine N-methyltransferase activity in fetal, adult, and tumor tissues, Cancer Res., 35, 640–643 (1975).

    PubMed  CAS  Google Scholar 

  43. R. Bhat, C. Wagner, and E. Bresnick, The homodimeric from of glycine N-methyltransferase acts as a polycyclic aromatic hydrocarbon-binding receptor, Biochemistry, 36, 9906–9910 (1997).

    Article  PubMed  CAS  Google Scholar 

  44. S. Y. Chen, J. R. Lin, R. Darbha, P. Lin, T. Y. Liu, and Y. M. Chen, Glycine N-methyltransferase tumor susceptibility gene in the benzo(a)pyrene-detoxification pathway, Cancer Res. 64, 3617–3623 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric O. Uthus PhD.

Additional information

The U.S. Department of Agriculture, Agriculture Research Service, Northern Plains Area, is an equal opportunity/affirmative action employer and all agency services are available without discrimination.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uthus, E.O., Ross, S.A. & Davis, C.D. Differential effects of dietary selenium (Se) and folate on methyl metabolism in liver and colon of rats. Biol Trace Elem Res 109, 201–214 (2006). https://doi.org/10.1385/BTER:109:3:201

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:109:3:201

Index Entries

Navigation