Skip to main content
Log in

Effects of zinc, copper, and selenium on placental cadmium transport

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of the present study was to evaluate the potential effects of zinc, copper, and selenium on placental cadmium transport. From November 2002 through January 2003, a total of 47 healthy pregnant women from Da-Ye City, Hubei Province in central China participated in the study. Their age, parity, gestational age, pregnancy history, and lifestyle data were obtained by questionnaire interview. The placental, whole-blood, and cord blood levels of cadmium were determined by inductively coupled plasma mass spectrometer (ICP-MS), whole-blood zinc was measured by flame atomic absorption spectrometry (F-AAS), whole-blood copper by ICP-MS, and selenium was by atomic fluorescence spectrophotometry (AFS). The cord blood cadmium concentration (0.020–1.48 μg/L) was significantly lower than in maternal blood (0.80–25.20 μg/L, p<0.01). The placental cadmium concentration was from 0.082 to 3.97 μg/g dry weight. Multiple linear regression analysis indicated that lower levels of maternal blood copper were significantly associated with higher cadmium concentrations in cord blood. Placental cadmium in women with lower levels of maternal blood zinc was significantly higher than in those with normal zinc levels. The placental cadmium level in women with lower whole-blood selenium was significantly lower than in subjects with normal selenium levels. It was concluded that the essential elements copper, selenium, and zinc might significantly affect placental cadmium transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Järup, Cadmium overload and toxicity, Nephrol. Dial. Transplant. 17, 35–39 (2002).

    PubMed  Google Scholar 

  2. T. Jin, Q. Kong, T. Ye, et al., Environmental epidemiology: human health impacts caused by cadmium, Chin. J. Environ. Occun. Med., 19, 10–16 (2002) (in Chinese).

    Google Scholar 

  3. S. Cai, L. Yue, T. Jin, and G. Nordberg, Renal dysfunction from cadmium contamination of irrigation water: dose-response analysis in a Chinese population, Bull. World Health Org. 76, 153–159 (1998).

    PubMed  CAS  Google Scholar 

  4. E. F. Madden and B. A. Fowler, Mechanisms of nephrotoxicity from metal combinations: a review, Drug Chem. Toxicol., 23, 1–12 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. M. Berglund, A. Akesson, P. Bjellerup, and M. Vahter, Metal-bone interactions, Toxicol. Lett. 112–113, 219–225 (2000).

    Article  PubMed  Google Scholar 

  6. T. Alfven, C. G. Elinder, M. D. Carlsson, et al., Low-level cadmium exposure and osteoporosis, J. Bone Miner. Res. 15, 1579–1586 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. G. Nordberg, T. Jin, A. Bernard, et al., Low bone density and renal dysfunction following environmental cadmium exposure in China, Ambio, 31, 478–481 (2002).

    Article  PubMed  Google Scholar 

  8. T. L. Sorell and J. H. Graziano, Effect of oral cadmium exposure during pregnancy on maternal and fetal zinc metabolism in the rat, Toxicol. Appl. Pharmacol. 102, 537–545 (1990).

    Article  PubMed  CAS  Google Scholar 

  9. L. Shen, Q. Fan, X. Ding, and T. Jin, Influence of cadmium exposure during gestation and lactation on the growth and development of the second generation in rats, J. Health Toxicol. 15, 197–200 (2001) (in Chinese).

    Google Scholar 

  10. B. Baranski, Effect of exposure of pregnant rats to cadmium on prenatal and postnatal development of the young, J. Hyg. Epidemiol. Microbiol. Immunol., 29, 253–262 (1984).

    PubMed  CAS  Google Scholar 

  11. S. Zhou, H. Jiang, Z. Shi, Q. Xu, C. Yan, and J. He, Study of effects of cadmium on development of the second generation and kidney function in rats, J. Health Toxicol. 4, 14–17 (1990) (in Chinese).

    Google Scholar 

  12. D. Holt and M. Webb, Comparison of some biochemical effects of teratogenic doses of mercuric mercury and cadmium in the pregnant rat, Arch. Toxicol. 58, 249–254 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. I. Desi, L. Nagymajtenyi, and H. Schulz, Behavioral and neurotoxicological changes caused by cadmium treatment of rats during development, J. Appl. Toxicol. 18, 63–70 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. L. Nagymajtenyi, H. Schulz, and I. Desi, Behavioural and functional neurotoxicological changes caused by cadmium in a three-generational study in rats, Hum. Exp. Toxicol. 16, 691–699 (1997).

    PubMed  CAS  Google Scholar 

  15. U. Fagher, T. Laudanski, A. Schütz, M. Sipowicz, and M. Akerlund, The relationship between cadmium and lead burdens and preterm labor, Int. J. Gynecol. Obstet. 40, 109–114 (1993).

    Article  CAS  Google Scholar 

  16. M. Nishijo, H. Nakagawa, R. Honda, et al., Effects of maternal exposure to cadmium on pregnancy outcome and breast milk, Occup. Environ. Med. 59, 394–397 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. C. D. Salpietro, S. Gangemi, P. L. et al., Cadmium concentration in maternal and cord blood and infant birth weight: a study on healthy non-smoking women, J. Perinat. Med. 30, 395–399 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. R. M. Jacobs, A. O. Jones, M. R. Fox, et al., Effects of dietary zinc, manganese, and copper on tissue accumulation of cadmium by Japanese quail, Proc. Soc. Exp. Biol. Med. 172, 34–38 (1983).

    PubMed  CAS  Google Scholar 

  19. P. C. Tewari, D. N. Kachru, and S. K. Tandon, Influence of copper and iron on subacute cadmium intoxication in protein-malnourished rats, Environ. Res. 41, 53–60 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. L. B. Nehru and M. P. Bansal, Effect of selenium supplementation on the glutathione redox system in the kidney of mice after chronic cadmium exposures, J. Appl. Toxicol. 17, 81–84 (1997).

    Article  PubMed  CAS  Google Scholar 

  21. R. A. Goyer, Toxic and essential metal interactions, Annu. Rev. Nutr., 17, 37–50 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. M. A. Peraza, F. Ayala-Fierro, D. S. Barber, E. Casarez, and L. T. Rael, Effects of micronutrients on metal toxicity, Environ. Health Perspect. 106, 203–216 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. G. V. Iyengar, Revaluation of the trace element content in reference man, Radiat. Phys. Chem. 51, 545–560 (1998).

    Article  CAS  Google Scholar 

  24. I. Baranowska, Lead and cadmium in human placentas and maternal and neonatal blood (in a heavily polluted area) measured by graphite furnace atomic absorption spectrometry, Occup. Environ. Med. 52, 229–232 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. K. Osman, A. Åkesson, M. Berglund, et al., Toxic and essential elements in placentas of Swedish women, Clin. Biochem. 33, 131–138 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. B. Sarkar, Metal-protein interactions in transport, accumulation, and excretion of metals, Biol. Trace Element Res. 21, 136–144 (1989).

    Article  Google Scholar 

  27. W. Y. Boadi, S. Yannai, J. Urbach, J. M. Brandes, and K. H. Summer, Transfer and accumulation of cadmium, and the level of metallothionein in perfused human placentae, Arch. Toxicol. 65, 318–323 (1991).

    Article  PubMed  CAS  Google Scholar 

  28. T. L. Blalock, M. A. Dunn, and R. J. Cousins, Metallothionein gene expression in rats: tissue-specific regulation by dietary copper and zinc, J. Nutr. 118, 222–228 (1988).

    PubMed  CAS  Google Scholar 

  29. I. Bremner, J. N. Morrison, A. M. Wood, and J. R. Arthur, Effects of changes in dietary zinc, copper and selenium supply and of endotoxin administration on metallothionein I concentrations in blood cells and urine in the rat, J. Nutr. 117, 1595–1602 (1987).

    PubMed  CAS  Google Scholar 

  30. T. A. Gasiewicz and J. C. Smith, Properties of the cadmium and selenium complex formed in rat plasma in vivo and in vitro, Chem. Biol. Interact. 23, 171–183 (1978).

    Article  PubMed  CAS  Google Scholar 

  31. L. Jamba, B. Nehru, and M. P. Bansal, Redox modulation of selenium binding proteins by cadmium exposures in mice, Mol. Cell. Biochem. 177, 169–175 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zhao, Y., Wang, J. et al. Effects of zinc, copper, and selenium on placental cadmium transport. Biol Trace Elem Res 102, 39–49 (2004). https://doi.org/10.1385/BTER:102:1-3:039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:102:1-3:039

Index Entries

Navigation