Skip to main content
Log in

Using a feed-grade zinc propionate to achieve molt induction in laying hens and retain postmolt egg production and quality

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A commercial-feed-grade form of zinc propionate was examined as a potential feed amendment at a concentration of 1% zinc to induce molt in 90-wk-old hens. Dietary treatments consisted, of 4 treatment groups of 28 birds each randomly assigned to either (1) molted conventionally by feed withdrawal, (2) 1% zinc as Zn acetate, (3) 1% zinc as Zn propionate, or (4) nonmolted control for 9 d. Ovary weights of hens fed Zn acetate or Zn propionate were not significantly different from each other, but hens fed Zn acetate or Zn propionate were significantly (p<0.05) lighter than the ovary weight of nonmolted control hens. Zinc concentrations in the kidney and liver were significantly (p<0.05) increased in both Zn acetate- and Zn propionate-molted hens when compared to either nonmolted control-fed hens or feed-withdrawal molted hens. Over the entire 3-mo postmolt period, there were no significant differences in interior or exterior egg qualities among the four treatments Egg production of hens fed Zn acetate was significantly lower than feed-withdrawal hens, Zn propionate-fed hens, or nonmolted control hens (p<0.05). The data of the current study demonstrated that feeding a feed grade of Zn propionate (1% Zn)-supplemented diet can induce molt and retain postmolt egg quality and production comparable to hens molted by feed withdrawal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. D. Berry, The physiology of molting, Poult. Sci. 82, 971–980 (2003).

    PubMed  CAS  Google Scholar 

  2. D. D. Bell, Historical and current molting practices in the U.S. table egg industry, Poult. Sci. 82, 965–970 (2003).

    PubMed  CAS  Google Scholar 

  3. M. O. North and D. D. Bell, Commercial Chicken Production Manual, 4th ed., Chapman & Hall, New York (1990).

    Google Scholar 

  4. J Brake, Recent advances in induced molting, Poult. Sci. 72, 929–931 (1993).

    Google Scholar 

  5. P. S. Holt, Molting and Salmonella enterica serovar enteritidis infection: the problem and some solutions, Poult. Sci. 82, 1008–1010 (2003).

    PubMed  CAS  Google Scholar 

  6. S. C. Ricke The gastrointestinal tract ecology of Salmonella enteritidis colonization in molting hens, Poult. Sci. 82, 1003–1007 (2003).

    PubMed  CAS  Google Scholar 

  7. W. D. Berry and J. Brake, Comparison of parameters associated with molt induced by fasting, zinc, and flow dietary sodium incaged layers, Poult. Sci. 64, 2027–2036 (1985).

    CAS  Google Scholar 

  8. C. R. Creger and J. T. Scott, Dietary zinc as an effective resting agent for the laying hen, Poult. Sci 56 1706 (1977) (abstract).

    Google Scholar 

  9. J. T. Scott and C. R. Creger, The use of zinc as an effective molting agent in laying hens, Poult. Sci. 55, 2089 (1976) (abstract).

    Google Scholar 

  10. S. Y. Park, S. G. Birkhold, L. F. Kubena, D. J. Nisbet, and S. C. Ricke, Effects of high zinc diets using zinc propionate on molt induction, organs, and postmolt egg production and quality in laying hens, Poult. Sci. 83, 24–33 (2004).

    PubMed  CAS  Google Scholar 

  11. N. A. Paster, Commercial scale study of the efficiency of propionic acid and calcium propionate as fungistats in poultry feed, Poult. Sci. 58, 572–576 (1979).

    CAS  Google Scholar 

  12. S. C. Ricke, Perspectives on the use of organic acids and short chain fatty acids as antimicrobials, Poult. Sci. 82, 632–639 (2003).

    PubMed  CAS  Google Scholar 

  13. R. W. Moore, S. Y. Park, L. F. Kubena, et al., Comparison of zinc acetate and propionate addition on gastrointestinal tract fermentation and susceptibility of laying hens to Salmonella enteritidis during forced molt, Poul. Sci. 83, 1276–1286 (2004).

    CAS  Google Scholar 

  14. T. S. Edrington, L. F. Kubena, R. B. Harvey, and G. E. Rottinghaus, Influence of a super-activated charcoal on the toxic effects of aflatoxin or T-2 toxin in growing broilers, Poult. Sci. 76, 1205–1211 (1997).

    PubMed  CAS  Google Scholar 

  15. G. A. Ramirez, L. L. Sarlin, D. J. Caldwell, et al., Effect of feed withdrawal on the incidence of Salmonella in the crops and ceca of market age broiler chickens, Poult. Sci. 76, 654–656 (1997).

    PubMed  CAS  Google Scholar 

  16. S. B. Daugherty, Effects of prenatal energy supplementation and prenatal prebreeding trace mineral/vitamin E supplemental on calf health and reproductive performance in beef cows, M.S. thesis, Texas A&M University (2002).

  17. M. S. Davis, Effects of supplemental copper on cellular and humoral immune response and performance of newly weaned calves, M.S. thesis, Texas A&M University (1998).

  18. K. Keshavarz and F. W. Quimby, An investigation of different molting techniques with an emphasis on animal welfare, J. Appl. Poult. Res. 11, 54–67 (2002).

    Google Scholar 

  19. R. S. Hunter and R. W. Harold, The Measurement of Appearance, 2nd ed., Wiley-Interscience, New York (1987).

    Google Scholar 

  20. S. M. Herber-McNeil and M. E. Van Elswyk, Dietary marine algae maintains egg consumer acceptability while enhancing yolk color, Poult. Sci. 77, 493–496 (1998).

    Google Scholar 

  21. SAS Institute, SAS ® User’s Guide, Statistics, SAS Institute Inc., Cary, NC (1985).

    Google Scholar 

  22. T. J. Humphrey, A. Baskerville, A. Whitehead, B. Rowe, and A. Henley, Influence of feeding patterns on the artificial infection of laying hens with Salmonella enteritidis phage type 4, Vet. Rec. 132, 407–409 (1993).

    PubMed  CAS  Google Scholar 

  23. J. A. Durant, D. E. Corrier, J. A. Byrd, L. H. Stanker, and S. C. Ricke, Feed deprivation affects crop environment and modulates Salmonella enteritidis colonization and invasion of leghorn hens, Appl. Environ. Microbiol. 65, 1919–1923 (1999).

    PubMed  CAS  Google Scholar 

  24. C. C. McCormick and D. L. Cunningham, Performance and physiological profiles of high dietary zinc and fasting as methods of inducing a forced rest: a direct comparison, Poult. Sci. 66, 1007–1013 (1987).

    PubMed  CAS  Google Scholar 

  25. J. Brake and P. Thaxton, Physiological changes in caged layers during a forced molt. 2. Gross changes in organs, Poult. Sci. 58, 707–716 (1979).

    PubMed  CAS  Google Scholar 

  26. J. Brake, M. Baker, and J. G. Mannix, Weight loss characteristics of the body, liver, ovary, oviduct, and uterine lipid during a forced molt and their relationship to performance, Poult. Sci. 60, 1628 (1981) (abstract)

    Google Scholar 

  27. J. Brake and G. R. McDaniel, Factors affecting broiler breeder performance. 3. Relationship of body weight during fasting to postmolt performance, Poult. Sci. 60, 726–729 (1981).

    Google Scholar 

  28. M. Baker, J. Brake, and G. R. McDaniel, The relationship between body weight loss during an induced molt and postmolt egg production, egg weight, and shell quality in cage layers, Poult. Sci. 62, 409–413 (1983).

    PubMed  CAS  Google Scholar 

  29. A. W. Norman and G. Litwack, eds., Pineal hormones, in Hormones, 2nd ed., Academic, San Diego, CA, pp. 485–494 (1997).

  30. P. D. Sturkie, Endocrine influences on lipid metabolism, in Avian Physiology, 3rd ed., P. D. Sturkie, ed., Springer-Verlag, New York (1976).

    Google Scholar 

  31. C. C. McCormick and D. L. Cunningham, Forced resting by high dietary zinc: tissue zinc accumulation and reproductive organ weight changes, Poult. Sci. 63, 1207–1212 (1984).

    PubMed  CAS  Google Scholar 

  32. G. J. Fosmire, Zinc toxicity, Am. J. Clin. Nutr. 51, 225–227 (1990).

    PubMed  CAS  Google Scholar 

  33. W. A. Dewar, P. A. L. Wight, R. A. Pearson, and M. J. Gentle, Toxic effects of high concentrations of zinc oxide in the diet of the chick and laying hen, Br. Poult. Sci. 24, 397–404 (1983).

    PubMed  CAS  Google Scholar 

  34. R. L. Shippee, P. E. Stake, U. Koehn, J. L. Lambert, and R. W. Simmons III, High dietary zinc or magnesium as forced-resting agents for laying hens, Poult. Sci. 58, 949–954 (1979).

    CAS  Google Scholar 

  35. A. Bar, V. Razaphkovsky, D. Shinder, and E. Vax, Alternative procedures for molt induction: practical aspects, Poult. Sci. 82, 543–550 (2003).

    PubMed  CAS  Google Scholar 

  36. N. W. Said, T. W. Sullivan, H. R. Bird, and M. L. Sunde, A comparison of the effect of two forced molting methods on performance of two commercial strains of laying hens, Poult. Sci. 63, 2399–2403 (1984).

    PubMed  CAS  Google Scholar 

  37. E. C. Naber, J. D. Latshaw, and A. G. Marsh, Use of low sodium diets for recycling of laying hens, Poult. Sci. 59, 1643 (1980) (abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.Y., Kim, W.K., Birkhold, S.G. et al. Using a feed-grade zinc propionate to achieve molt induction in laying hens and retain postmolt egg production and quality. Biol Trace Elem Res 101, 165–179 (2004). https://doi.org/10.1385/BTER:101:2:165

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:101:2:165

Index Entries

Navigation