Skip to main content
Log in

Understanding factors that limit enzymatic hydrolysis of biomass

Characterization of pretreated corn stover

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Spectroscopic characterization of both untreated and treated material is being performed in order to determine changes in the biomass and the effects of pretreatment on crystallinity, lignin content, selected chemical bonds, and depolymerization of hemicellulose and lignin. The methods used are X-ray diffraction for determination of cellulose crystallinity (CrI); diffusive reflectance infrared (DRIFT) for changes in C-C and C-O bonds; and fluorescence to determine lignin content. Changes in spectral characteristics and crystallinity are statistically correlated with enzymatic hydrolysis results to identify and better understand the fundamental features of biomass that govern its enzymatic conversion to monomeric sugars. Models of the hydrolysis initial rate and 72 h extent of conversion were developed and evaluated. Results show that the hydrolysis initial rate is most influenced by the cellulose crystallinity, while lignin content most influences the extent of hydrolysis at 72 h. However, it should be noted that in this study only crystallinity, lignin, and selected chemical bonds were used as inputs to the models. The incorporation of additional parameters that affect the hydrolysis, like pore volume and size and surface area accessibility, would improve the predictive capability of the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wyman, C. E. (1994), Ethanol from Lignocellulosic Biomass: technology, economics and opportunities, Biores. Techn. 50, 3–16.

    Article  CAS  Google Scholar 

  2. Wyman, Charles (ed.), (1996), Handbook on Bioethanol: Production and Utilization, Taylor and Francis, Washington, DC, USA.

    Google Scholar 

  3. Buchanan, Bob B. Gruissem W., and Jones R. L. (2001), Biochemistry and Molecular Biology of Plants, 3rd ed. Courier Companies, Inc., 2001.

  4. Sugiyama, J., Okano, T., Yamamoto, H., and Horii, F. (1990), Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment, Macromolecules 23, 2461–2498.

    Article  Google Scholar 

  5. Chang, V. S., Barry Burr, and Mark T. Holtzapple. (1997), “Lime Pretreatment of Switchgrass”, Appl Biochem Biotechnol, 63–65, 3–19.

    Google Scholar 

  6. Holtzapple, M. T., Jun, J.-H., Ashok, G., Patibandla, S. L., and Dale, B. E. (1991), The ammonia freeze explosion (AFEX) process, Appl Biochem Biotechnol, 28/29, 59–74.

    Google Scholar 

  7. Yoon, H.H., Wu, Z.W. and Lee, Y.Y. (1995), Ammonia-recycled percolation process for pretreatment of biomass feedstock, Appl. Biochem. Biotechnol. 51/52, 5–19.

    CAS  Google Scholar 

  8. Hogan, C. M. and Mes-Hartree, M. (1990), Recycle of cellulases and the use of lignocellulosic residue for enzyme production after hydrolysis of steam-pretreated aspenwood, J. Ind. Microbiol. 6, 253–262.

    Article  CAS  Google Scholar 

  9. Dale, B. E. and Moreira, M. J. (1983), Biotechnol. Bioengineer. Symp. 12, 13.

    Google Scholar 

  10. Holtzapple, M. T. and Torget, R. (1997), Thermal and biological processing, Appl. Biochem. Biotechnol. 63–65, 1–2.

    Google Scholar 

  11. Hespell, R. B., O’Bryan, P. J., Moniruzzaman, M., and Bothast, R. J. (1997), Hydrolysis by commercial enzyme mixtures of AFEX-treated corn fiber and isolated xylans, Appl. Biochem. Biotechnol. 62, 87–97.

    CAS  Google Scholar 

  12. Chang, V. S., Nagwani, M., and Holtzapple, M. T. (1998), Lime pretreatment of crop residues bagasse and wheat straw, Appl. Biochem. Biotechnol. 74, 135–159.

    CAS  Google Scholar 

  13. Segal, L., Creely, J. J., Martin, A. E., Jr., and Conrad, C. M. (1959), “An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Textile Res. J. 29, 786–794.

    CAS  Google Scholar 

  14. Wallace, G., Chesson, A., Lomax, J.A., and Jarvis, M.C. (1991), Lignin-carbohydrate complexes in graminaceous cell walls in relation to digestibility, Animal Feed Sci. Technol., 32, 193–199.

    Article  CAS  Google Scholar 

  15. Jung, H. G., Mertens, D. R., and Payne, A. J. (1997), Correlation of acid detergent lignin and klason lignin with digestibility of forage dry matter and neutral detergent fiber, J. Dairy Sci. 80, 1622–1628.

    Article  PubMed  CAS  Google Scholar 

  16. Morrison, I. M. (1974), Structural investigations on the lignin-carbohydrate complexes from Lolium perenne, Biochem. J., 139, 197–204.

    PubMed  CAS  Google Scholar 

  17. Lundquist, K., Josefsson, B., and Nyquist, G. (1978), Analysis of lignin products by fluorescence spectroscopy, Holzforschung, 32, 27–32.

    Article  CAS  Google Scholar 

  18. Kong, F., Engler, C. R., and Soltes, E. J. (1992), Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood, Appl. Biochem. Biotechnol. 34/35, 23–35.

    Article  Google Scholar 

  19. Bertran, M. S. and Dale, B. E. (1985), Enzymatic hydrolysis and recrystallization behavior of initially amorphous cellulose, Biotechnol. Bioengineer, XXVII, 177–181.

    Article  Google Scholar 

  20. Kendall, S. M. (1980), Multivariate Analysis 2nd ed., Macmillan Publishing, Co., New york.

    Google Scholar 

  21. Beebe, K. R. and Kowalski, B. R. (1987), An introduction to multivariate calibration and analysis, Analy. Chemi. 59, 1007A-1017A.

    Article  CAS  Google Scholar 

  22. Thompson David N., Hsin-Chih Chen, and Hans Grethlein. (1992), “Comparison of Pretreatment Methods on the Basis of Available Surface Area”, Biores Technol, 39, 155–163.

    Article  CAS  Google Scholar 

  23. Teymouri, F., Laureano-Perez, L., Alizadeh, H. and Dale, B. E. (2004), Ammonia fiber explosion treatment of corn stover, Appl. Biochem. Biotechnol. 113–116, 951–963.

    Article  PubMed  Google Scholar 

  24. Stewart, D., Wilson, H.M., Hendra, P.J. and Morrison, I.M. (1995), Fourier-transform infrared spectroscopic study of biochemical and chemical Treatments of oak wood (Quercus rubra) and barley (Hordeum vulgare) straw, J. Agric Food Chem. 43, 2219–2225.

    Article  CAS  Google Scholar 

  25. Pandey, K.K. (1998), A study of chemical structure of soft and hardwood and wood polymers by FTIR sectroscopy, J. Appl. Polymer Sci. 71, 1969–1975.

    Article  Google Scholar 

  26. http://permanent.access.gpo.gov/websites/www.olt.doe.sov/biofuels/asclytical_methods.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce E. Dale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laureano-Perez, L., Teymouri, F., Alizadeh, H. et al. Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotechnol 124, 1081–1099 (2005). https://doi.org/10.1385/ABAB:124:1-3:1081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:124:1-3:1081

Index Entries

Navigation