Skip to main content

DNA Damage Quantitation by Alkaline Gel Electrophoresis

  • Protocol
Book cover DNA Repair Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 314))

Abstract

Quantifying DNA lesions provides a powerful way to assess the level of endogenous damage or the damage level induced by radiation, chemical or other agents, as well as the ability of cells to repair such damages. Quantitative gel electrophoresis of experimental DNAs along with DNA length standards, imaging the resulting dispersed DNA and calculating the population average length allows accurate measurement of lesion frequencies. Number average length analysis provides high sensitivity and does not require any specific distribution of lesions within the DNA molecules. These methods are readily applicable to strand breaks and ultraviolet radiation induced pyrimidine dimers, but can also be used—with appropriate modifications—for ionizing radiationinduced lesions such as oxidized bases and abasic sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freeman, S. E., Blackett, A. D., Monteleone, D. C., Setlow, R. B., Sutherland, B. M., and Sutherland, J. C. (1986) Quantitation of radiation-, chemical-, or enzymeinduced single strand breaks in nonradioactive DNA by alkaline gel electrophoresis: application to pyrimidine dimers. Anal. Biochem. 158, 119–129.

    Article  PubMed  CAS  Google Scholar 

  2. Sutherland, J. C., Bergman, A. M., Chen, C.-Z., Monteleone, D. C., Trunk, J., and Sutherland, B. M. (1988) Measurement of DNA damage using gel electrophoresis and electronic imaging, in Electrophoresis 88 (Schafer-Nielsen, C., ed.). VCH Verlagsgesellschaft, Weinheim, Germany, pp. 485–499.

    Google Scholar 

  3. Sutherland, J. C., Monteleone, D. C., Trunk, J. G., Bennett, P. V., and Sutherland, B.M. (2001) Quantifying DNA damage by gel electrophoresis, electronic imaging and number average length analysis. Electrophoresis 22, 843–854.

    Article  PubMed  CAS  Google Scholar 

  4. Sutherland, B. M., Bennett, P. V., Georgakilas, A. G., and Sutherland, J.C. (2003) Evaluation of number average length analysis in quantifying double strand breaks in genomic DNAs. Biochemistry 42, 3375–3384.

    Article  PubMed  CAS  Google Scholar 

  5. Sutherland, B. M., Bennett, P. V., and Sutherland, J. C. (1996) Double strand breaks induced by low doses of gamma rays or heavy ions: quantitation in nonradioactive human DNA. Anal. Biochem. 239, 53–60.

    Article  PubMed  CAS  Google Scholar 

  6. Bennett, P. V., Gange, R. W., Hacham, H., et al. (1996) Isolation of high molecular length DNA from human skin. BioTechniques 21, 458–463.

    PubMed  CAS  Google Scholar 

  7. Sutherland, J. C., Lin, B., Monteleone, D. C., Mugavero, J., Sutherland, B. M., and Trunk, J. (1987) Electronic imaging system for direct and rapid quantitation of fluorescence from electrophoretic gels: application to ethidium bromide-stained DNA. Anal. Biochem. 163, 446–457.

    Article  PubMed  CAS  Google Scholar 

  8. Sutherland, J. C. (1990) Electronic imaging systems for quantitative electrophoresis of DNA, in Non-Invasive Techniques in Biology and Medicine (Freeman, S. E., Fukishima, E., and Green, E. R., eds.). San Francisco Press, San Francisco, CA, pp. 125–134.

    Google Scholar 

  9. Sutherland, J. C. (1993) Electronic imaging of electrophoretic gels and blots, in Advances in Electrophoresis, Vol. 6 (Chrambach, A., Dunn, M. J. and Radola, B. J., eds.). VCH Publishers, New York, NY, and Weinheim, Germany, pp. 1–42.

    Google Scholar 

  10. Sutherland, J. C., Monteleone, D. C., and Sutherland, B. M. (1997) Computer network for data acquisition, storage and analysis. J. Photochem. Photobiol. B 40, 14–22.

    Article  PubMed  CAS  Google Scholar 

  11. McDonell, M., Simon, M. N., and Studier, F. W. (1977) Analysis of restriction fragments of T7 DNA and determination of molecular weights of electrophoresis of neutral and alkaline gels. J. Mol. Biol. 110, 119–143.

    Article  PubMed  CAS  Google Scholar 

  12. Freeman, S. E., Hacham, H., Gange, R. W., Maytum, D., Sutherland, J. C., and Sutherland, B. M. (1989) Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ. Proc. Natl. Acad. Sci. USA 86, 5605–5609.

    Article  PubMed  CAS  Google Scholar 

  13. Quaite, F. E., Sutherland, B. M., and Sutherland, J. C. (1992) Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion. Nature 358, 576–578.

    Article  CAS  Google Scholar 

  14. Sutherland, J. C. and Sutherland, B. M. (1975) Human photoreactivating enzyme: action spectrum and safelight conditions. Biophysical J. 15, 435–440.

    Article  CAS  Google Scholar 

  15. Sutherland, B. M. and Shih, A. G. (1983) Quantitation of pyrimidine dimer content of nonradioactive deoxyribonucleic acid by electrophoresis in alkaline agarose gels. Biochemistry 22, 745–749.

    Article  PubMed  CAS  Google Scholar 

  16. Sutherland, B. M., Bennett, P. V., Sidorkina, O., and Laval, J. (2000) DNA damage clusters induced by ionizing radiation in isolated DNA and in human cells. Proc. Natl. Acad. Sci. USA 97, 103–108.

    Article  PubMed  CAS  Google Scholar 

  17. Sutherland, B. M., Quaite, F. E., and Sutherland, J. C. (1994) DNA damage action spectroscopy and DNA repair in intact organisms: alfalfa seedlings, in Stratospheris Ozone Depletion/UV-B Radiation in the Biosphere, Vol. 18 (Biggs, R. H. and Joyner, M. E. B., eds.). NATO ASI Series, Springer-Verlag, Berlin, Germany, pp. 97–106.

    Google Scholar 

  18. Hidema, J., Kumagai, T., Sutherland, J. C., and Sutherland, B. M. (1996) Ultraviolet B-sensitive rice cultivar deficient in cyclobutyl pyrimidine dimer repair. Plant Physiol. 113, 39–44.

    Google Scholar 

  19. Quaite, F. E., Sutherland, B. M., and Sutherland, J. C. (1992) Quantitation of pyrimidine dimers in DNA from UVB-irradiated alfalfa (Medicago sativa L.) seedlings. Appl. Theor. Electrophoresis 2, 171–175.

    CAS  Google Scholar 

  20. Quaite, F. E., Sutherland, J. C., and Sutherland, B. M. (1994) Isolation of high-molecular-weight plant DNA for DNA damage quantitation: relative effects of solar 297 nm UVB and 365 nm radiation. Plant Mol. Biol. 24, 475–483.

    Article  PubMed  CAS  Google Scholar 

  21. Quaite, F. E., Takayanagi, S., Ruffini, J., Sutherland, J. C., and Sutherland, B. M. (1994) DNA damage levels determine cyclobutyl pyrimidine dimer repair mechanisms in alfalfa seedlings. Plant Cell 6, 1635–1641.

    Article  PubMed  CAS  Google Scholar 

  22. Freeman, S. E., Gange, R. W., Matzinger, E. A., and Sutherland, B. M. (1986) Higher pyrimidine dimer yields in skin of normal humans with higher UVB sensitivity. J. Invest. Dermatol. 86, 34–36.

    Article  PubMed  CAS  Google Scholar 

  23. Freeman, S. E., Gange, R. W., Sutherland, J. C., and Sutherland, B. M. (1987) Pyrimidine dimer formation in human skin. Photochem. Photobiol. 46, 207–212.

    Article  PubMed  CAS  Google Scholar 

  24. Freeman, S. E., Gange, R. W., Sutherland, J. C., Matzinger, E. A., and Sutherland, B. M. (1987) Production of pyrimidine dimers in DNA of human skin exposed in situ to UVA radiation. J. Invest. Dermatol. 88, 430–433.

    Article  PubMed  CAS  Google Scholar 

  25. Hacham, H., Freeman, S. E., Gange, R. W., Maytum, D. J., Sutherland, J. C., and Sutherland, B. M. (1990) Does exposure of human skin in situ to 385 or 405 nm UV induce pyrimidine dimers in DNA? Photochem. Photobiol. 52, 893–896.

    Article  PubMed  CAS  Google Scholar 

  26. Sutherland, B. M. and Bennett, P. V. (1995) Human white blood cells contain cyclobutyl pyrimidine dimer photolyase. Proc. Natl. Acad. Sci. USA 92, 9732–9736.

    Article  PubMed  CAS  Google Scholar 

  27. Doggett, N. A., Smith, C. L., and Cantor, C. R. (1992) The effect of DNA concentration on mobility in pulsed field gel electrophoresis. Nucleic Acids Res. 20, 859–864.

    Article  PubMed  CAS  Google Scholar 

  28. Ribeiro, E. A. and Sutherland, J. C. (1991) Quantitative gel electrophoresis of DNA: resolution of overlapping bands of restriction endonuclease digests. Anal. Biochem. 194, 174–184.

    Article  PubMed  CAS  Google Scholar 

  29. Ribeiro, E., Larcom, L. L., and Miller, D. P. (1989) Quantitative fluorescence of DNA intercalated ethidium bromide on agarose gels. Anal. Biochem. 181, 197–208.

    Article  PubMed  CAS  Google Scholar 

  30. Sutherland, J. C., Monteleone, D. C., Mugavero, J. H., and Trunk, J. (1987) Unidirectional pulsed-field electrophoresis of single-and double-stranded DNA in agarose gels: analytical expression relating mobility and molecular length and their application in the measurement of strand breaks. Anal. Biochem. 162, 511–520.

    Article  PubMed  CAS  Google Scholar 

  31. Sutherland, J. C., Reynolds, K. J., and Fisk, D. J. (1996) Dispersion functions and factors that determine resolution for DNA sequencing by gel electrophoresis. Proc. Soc. Photo Opti. Instr. Eng. 2680, 326–340.

    CAS  Google Scholar 

  32. Sutherland, J. C. (1997) Linking electrophoretic resolution with experimental conditions. Proc. Soc. Photo Opti. Instr. Eng. 2985, 47–60.

    CAS  Google Scholar 

  33. Veatch, W. and Okada, S. (1969) Radiation-induced breaks of DNA in cultured mammalian cells. Biophys. J. 9, 330–346.

    Article  PubMed  CAS  Google Scholar 

  34. Sutherland, B. M., Bennett, P. V., Sidorkina, O., and Laval, J. (2000) Clustered damages and total lesions induced in DNA by ionizing radiation: oxidized bases and strand breaks. Biochemistry 39, 8026–8031.

    Article  PubMed  CAS  Google Scholar 

  35. Drouin, R., Rodriguez, H., Gao, S. W., et al. (1996) Cupric ion/ascorbate/hydrogen peroxide-induced DNA damage: DNA-bound copper ion primarily induces base modifications. Free Radic. Biol. Med. 21, 261–273.

    Article  PubMed  CAS  Google Scholar 

  36. Bennett, P. V. and Sutherland, B. M. (1993) Quantitative detection of single-copy genes in nanogram samples of human genomic DNA. BioTechniques 15, 520–525.

    PubMed  CAS  Google Scholar 

  37. Bennett, P. V., Hada, M., Hidema, J., et al. (2001) Isolation of high molecular length DNA: alfalfa, pea, rice, sorghum, soybean and spinach. Crop Sci. 41, 167–172.

    Article  CAS  Google Scholar 

  38. Chu, G., Vollrath, D., and Davis, R. W. (1986) Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234, 1582–1585.

    Article  PubMed  CAS  Google Scholar 

  39. Gardiner, K., Laas, W., and Patterson, D. (1986) Fractionation of large mammalian DNA restriction fragments using vertical pulsed-field gradient gel electrophoresis. Somat. Cell Mol. Genet. 12, 185–195.

    Article  PubMed  CAS  Google Scholar 

  40. Serwer, P. (1987) Gel electrophoresis with discontinuous rotation of the gel: An alternative to gel electrophoresis with changing direction of the electrical field. Electrophoresis 8, 301–304.

    Article  CAS  Google Scholar 

  41. Sutherland, J. C., Emrick, A. B., and Trunk, J. (1989) Separation of chromosomal length DNA molecules: pneumatic apparatus for rotating gels during electrophoresis. Electrophoresis 10, 315–317.

    Article  PubMed  CAS  Google Scholar 

  42. Gardiner, K., Laas, W., and Patterson, D. (1986) Fractionation of large mammalian DNA restriction fragments using vertical pulsed-field gradient gel electrophoresis. Som. Cell Mol. Genet. 12, 185–195.

    Article  CAS  Google Scholar 

  43. Sutherland, J. C., Sutherland, B. M., Emrick, A., et al. (1991) Quantitative electronic imaging of gel fluorescence with charged coupled device cameras: applications in molecular biology. BioTechniques 10, 492–497.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research supported by grants from the Low Dose Program of the Office of Biological and Environmental Research of the U. S. Department of Energy, the U. S. National Aeronautics and Space Administration, Office of Biological and Physical Research, the National Space Biomedical Research Institute, and the National Institutes of Health (CA86897) to B. M. S., and from the National Institutes of Health (EB002121) to J. C. S.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Sutherland, B.M., Bennett, P.V., Sutherland, J.C. (2006). DNA Damage Quantitation by Alkaline Gel Electrophoresis. In: Henderson, D.S. (eds) DNA Repair Protocols. Methods in Molecular Biology™, vol 314. Humana Press. https://doi.org/10.1385/1-59259-973-7:251

Download citation

  • DOI: https://doi.org/10.1385/1-59259-973-7:251

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-513-2

  • Online ISBN: 978-1-59259-973-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics