Skip to main content

Nanotechnology With S-Layer Proteins

  • Protocol
Protein Nanotechnology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 300))

Summary

The cross-fertilization of biology, chemistry, material sciences, and solid-state physics is opening up a great variety of new opportunities for innovation in nanosciences. One of the key challenges is the technological utilization of self-assembly systems wherein molecules spontaneously associate under equilibrium conditions into reproducible supramolecular aggregates. The attractiveness of such processes lies in their capability to build uniform, ultrasmall functional units and the possibility of exploiting such structures at meso- and macroscopic scale for life and nonlife science applications. The use of crystalline bacterial cell-surface proteins (S-layer proteins) provided innovative approaches for the assembly of supramolecular structures and devices with dimensions of a few to tens of nanometers. S-layers have proven to be particularly suited as building blocks in a molecular construction kit involving all major classes of biological molecules. The immobilization of biomolecules in an ordered fashion on solid substrates and their controlled confinement in definite areas of nanometer dimensions are key requirements for many applications including the development of bioanalytical sensors, biochips, molecular electronics, biocompatible surfaces, and signal processing among functional membranes, cells, and integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sleytr, U. B., Messner, P., Pum, P., and Sára, M. (eds.) (1996) Crystalline Bacterial Cell Surface Proteins, Academic, Austin, TX.

    Google Scholar 

  2. Sleytr, U. B. (1978) Regular arrays of macromolecules on bacterial cell walls: structure, chemistry, assembly and function. Int. Rev. Cytol. 53, 1–64.

    Article  PubMed  CAS  Google Scholar 

  3. Pum, D., Sára, M., and Sleytr, U. B. (1989) Structure, surface charge, and self-assembly of the S-layer lattice from Bacillus coagulans E38-66. J. Bacteriol. 171, 5296–5303.

    PubMed  CAS  Google Scholar 

  4. Sára, M., Pum, D., and Sleytr, U. B. (1992) Permeability and charge-dependent adsorption of the S-layer lattice from Bacillus coagulans E38-66. J. Bacteriol. 174, 3487–3493.

    PubMed  Google Scholar 

  5. Sleytr, U. B., Messner, P., Pum, D., and Sára, M. (1999) Crystalline bacterial cell surface layers (S layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew. Chem. Int. Ed. 38, 1034–1054.

    Article  CAS  Google Scholar 

  6. Sleytr, U. B., Sára, M., and Pum, D. (2000) Crystalline bacterial cell surface layers (S-layers): a versatile self-assembly system, in Supramolecular Polymerization (Ciferri, A., ed.), Marcel Dekker, New York, pp. 177–213.

    Google Scholar 

  7. Sleytr, U. B., Sára, M., Pum, D., and Schuster, B. (2001) Molecular nanotechnology and nanobiotechnology with two-dimensional protein crystals (S-layers), in Nano-Surface Chemistry (Rosoff, M., ed.), Marcel Dekker, New York, pp. 333–389.

    Google Scholar 

  8. Sleytr, U. B., Sára, M., Pum, D., Schuster, B., Messner, P., and Schäffer, C. (2003) Self assembly protein systems: microbial S-layers, in Biopolymers, vol. 7 (Steinbüchel, A. and Fahnestock, S., eds.), Wiley-VCH, Weinheim, Germany, pp. 285–338.

    Google Scholar 

  9. Hanke, W. and Schlue, W. R. (1993) Planar lipid bilayers: methods and applications, in Biological Techniques Series (Sattelle, D. B., ed.), Academic, London, UK, pp. 24–43.

    Google Scholar 

  10. Alvarez, O. (1986) How to set up a bilayer system, in Ion Channel Reconstitution (Miller, C., ed.), Plenum, New York, pp. 115–130.

    Google Scholar 

  11. Benz, R., Fröhlich, O., Läuger, P., and Montal, M. (1975) Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Biochim. Biophys. Acta 394, 323–334.

    Article  PubMed  CAS  Google Scholar 

  12. Montal, M. (1974) Formation of bimolecular membranes from lipid monolayers. Methods Enzymol. B 32, 545–554.

    Article  CAS  Google Scholar 

  13. Messner, P., Hollaus, F., and Sleytr, U. B. (1984) Paracrystalline cell wall surface layers of different Bacillus stearothermophilus strains. Int. J. Syst. Bacteriol. 34, 202–210.

    Article  Google Scholar 

  14. Sleytr, U. B., Sára, M., Küpcü, Z., and Messner, P. (1986) Structural and chemical characterization of S-layers of selected strains of Bacillus stearothermophilus and Desulfotomaculum nigrificans. Arch. Microbiol. 146, 19–24.

    Article  PubMed  CAS  Google Scholar 

  15. Bartelmus, W. and Perschak, F. (1957) Schnellmethode zur Keimzahlbestimmung in der Zuckerindustrie. Z. Zuckerind. 7, 276–281.

    Google Scholar 

  16. Pum, D. and Sleytr, U. B. (1995) Anisotropic crystal growth of the S-layer of Bacillus sphaericus CCM 2177 at the air/water interface. Colloids Surf. A 102, 99–104.

    Article  CAS  Google Scholar 

  17. Pum, D., Stangl, G., Sponer, C., Fallmann, W., and Sleytr, U. B. (1997) Deep ultraviolet patterning of monolayers of crystalline S-layer protein on silicon surfaces. Colloids Surf. B 8, 157–162.

    Article  CAS  Google Scholar 

  18. Pum, D., Stangl, G., Sponer, C., Riedling, K., Hudek, P., Fallmann, W., and Sleytr, U. B. (1997) Patterning of monolayers of crystalline S-layer proteins on a silicon surface by deep ultraviolet radiation. Microelectron. Eng. 35, 297–300.

    Article  CAS  Google Scholar 

  19. Xia, Y. and Whitesides, G. M. (1998) Soft lithography. Angew. Chem. Int. Ed. 37, 550–575.

    Article  CAS  Google Scholar 

  20. Michel, B., Bernard, A., Bietsch, A., et al. (2001) Printing meets lithography: soft approaches to high resolution patterning. IBM J. Res. Dev. 45, 697–719.

    Article  CAS  Google Scholar 

  21. Kumar, A., Biebuyck, H. A., and Whitesides, G. M. (1994) Patterning self-assembled monolayers: applications in materials science. Langmuir 10, 1498–1511.

    Article  CAS  Google Scholar 

  22. Kim, E., Xia, Y., and Whitesides, G. M. (1995) Making polymeric microstructures: capillary micromolding. Nature 376, 581–584.

    Article  CAS  Google Scholar 

  23. Györvary, E. S., O’Riordan, A., Quinn, A. J., Redmond, G., Pum, D., and Sleytr, U. B. (2003) Biomimetic nanostructure fabrication: nonlithographic lateral patterning and self-assembly of functional bacterial S-layers at silicon supports. Nano Lett. 3, 315–319.

    Article  Google Scholar 

  24. Talapin, D. V., Rogach, A. L., Kornowski, A., Haase, M., and Weller, H. (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 1, 207–211.

    Article  CAS  Google Scholar 

  25. Talapin, D. V., Rogach, A. L., Mekis, I., Haubold, S., Kornowski, A., Haase, M., and Weller, H. (2002) Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals. Colloids Surf. A 202, 145–154.

    Article  CAS  Google Scholar 

  26. Györvary, E., Schroedter, A., Talapin, D.V., Weller, H., Pum, D., and Sleytr, U. B. (2004) Formation of nanoparticle arrays on S-layer protein lattices. J. Nanosci. Nanotechnol. 4, 115–120.

    Article  PubMed  Google Scholar 

  27. Mueller, P., Rudin, D. O., Tein, H. T., and Wescott, W. C. (1962) Reconstitution of cell membrane structure in vitro and its transformation into excitable systems. Nature 194, 979–981.

    Article  PubMed  CAS  Google Scholar 

  28. Fettiplace, R., Gordon, L. G. M., Hladky, S. B., Requena, J., Zingsheim, H. P., and Haydon, D. A. (1975) Techniques in formation and examination of black lipid bilayer membranes, in Methods of Membrane Biology, vol. 4 (Korn, E. D., ed.), Plenum, New York, pp. 1–75.

    Google Scholar 

  29. Montal, M. and Mueller, P. (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. USA 69, 3561–3566.

    Article  PubMed  CAS  Google Scholar 

  30. Darszon, A. (1983) Strategies in the reassembly of membrane proteins into lipid bilayer systems and their functional assay. J. Bioenerg. Biomembr. 15, 321–334.

    Article  PubMed  CAS  Google Scholar 

  31. Schindler, H. (1989) Planar lipid-protein membranes: strategies of formation and of detection dependencies of ion transport functions on membrane conditions. Methods Enzymol. 171, 225–253.

    Article  PubMed  CAS  Google Scholar 

  32. Schuster, B. and Sleytr, U. B. (2000) S-layer supported lipid membranes. Rev. Mol. Biotechnol. 74, 233–254.

    Article  CAS  Google Scholar 

  33. Tien, H. T. and Ottova, A. L. (2001) The lipid bilayer concept and its experimental realization: from soap bubbles, kitchen sink, to bilayer lipid membranes. J. Membr. Sci. 189, 83–117.

    Article  CAS  Google Scholar 

  34. Schuster, B., Sleytr, U. B., Diederich, A., Bähr, G., and Winterhalter, M. (1999) Probing the stability of S-layer-supported planar lipid membranes. Eur. Biophys. J. 28, 583–590.

    Article  PubMed  CAS  Google Scholar 

  35. Schuster, B. and Sleytr, U. B. (2002) The effect of hydrostatic pressure on S-layer supported lipid membranes. Biochim. Biophys. Acta 1563, 29–34.

    Article  PubMed  CAS  Google Scholar 

  36. Schuster, B. and Sleytr, U. B. (2002) Single channel recordings of α-hemolysin reconstituted in S-layer-supported lipid bilayers. Bioelectrochemistry 55, 5–7.

    Article  PubMed  CAS  Google Scholar 

  37. Schuster, B., Pum, D., and Sleytr, U. B. (1998) Voltage clamp studies on S-layer-supported tetraether lipid membranes. Biochim. Biophys. Acta 1369, 51–60.

    Article  PubMed  CAS  Google Scholar 

  38. Schuster, B., Pum, D., Braha, O., Bayley, H., and Sleytr, U. B. (1998) Self-assembled α-hemolysin pores in an S-layer-supported lipid bilayer. Biochim. Biophys. Acta 1370, 280–288.

    Article  PubMed  CAS  Google Scholar 

  39. Schuster, B., Pum, D., Sára, M., Braha, O., Bayley, H., and Sleytr, U. B. (2001) S-layer ultrafiltration membranes: a new support for stabilizing functionalized lipid membranes. Langmuir 17, 400–503.

    Article  Google Scholar 

  40. Hirn, R., Schuster, B., Sleytr, U. B., and Bayerl, T. M. (1999) The effect of S-layer protein adsorption and crystallization on the collective motion of a lipid bilayer studied by dynamic light scattering. Biophys. J. 77, 2066–2074.

    Article  PubMed  CAS  Google Scholar 

  41. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T., and Rees, D. C. (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226.

    Article  PubMed  CAS  Google Scholar 

  42. Jones, S. E., Naik, R. R., and Stone, M. O. (2000) Use of small fluorescent molecules to monitor channel activity. Biochem. Biophys. Res. Commun. 279, 208–212.

    Article  PubMed  CAS  Google Scholar 

  43. Booth, I. R. and Louis, P. (1999) Managing hypoosmotic stress: aquaporins and mechanosensitive channels in Escherichia coli. Curr. Opin. Microbiol. 2, 166–169.

    Article  PubMed  CAS  Google Scholar 

  44. Schuster, B., Weigert, S., Pum, D., Sára, M., and Sleytr, U. B. (2003) New method for generating tetraether lipid membranes on porous supports. Langmuir 19, 2392–2397.

    Article  CAS  Google Scholar 

  45. Sleytr, U. B., Sára, M., Pum, D., and Schuster, B. (2001) Characterization and use of 2D protein crystals (S-layers). Prog. Surf. Sci. 68, 231–278.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ludwig Boltzmann Society; by grants from the Austrian Science Foundation (projects P-14419-MOB and P-16295-B07); and by the Volkswagen Foundation, Germany (project I/77 710).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Schuster, B., Györvary, E., Pum, D., Sleytr, U.B. (2005). Nanotechnology With S-Layer Proteins. In: Vo-Dinh, T. (eds) Protein Nanotechnology. Methods in Molecular Biology™, vol 300. Humana Press. https://doi.org/10.1385/1-59259-858-7:101

Download citation

  • DOI: https://doi.org/10.1385/1-59259-858-7:101

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-310-7

  • Online ISBN: 978-1-59259-858-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics