Skip to main content

Using the TIGR Assembler in Shotgun Sequencing Projects

  • Protocol
Bacterial Artificial Chromosomes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 255))

  • 1493 Accesses

Abstract

The TIGR Assembler (TA) (1) is the sequence assembly program used in sequencing projects at The Institute for Genomic Research (TIGR). Development of the TA was based on the experience obtained in more than 20 sequencing projects completed at TIGR (see http://www.tigr.org). This extensive experience led to a sequence assembler that produces few misassemblies (2,3) and has been used successfully in whole-genome shotgun sequencing of prokaryotic and eukaryotic organisms, bacterial artificial chromosome-based sequencing of eukaryotic organisms, and expressed sequence tag assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sutton, G. G., White, O., Adams, M. D., and Kerlavage, A. R. (1995) TIGR Assembler: a new tool for assembling large shotgun sequencing projects. Genome Sci. Technol. 1, 9–19.

    CAS  Google Scholar 

  2. Liang, F., Holt, I., Pertea, G., Karamycheva, S., Salzberg, S. L., and Quackenbush, J. (2000) An optimized protocol for analysis of EST sequences. Nucleic Acids Res. 28(18), 3657–3665.

    Article  PubMed  CAS  Google Scholar 

  3. Pevzner, P., Tang, H., and Waterman, M. S. (2001) A new approach to fragment assembly in DNA sequencing, in Proceedings of the Fifth Annual International Conference on Computational Biology (RECOMB). (Istrail, Lengauer, Pevzner, Sankoff, and Waterman, eds.), Association for Computing Machinery, Montreal, Canada. pp. 256–265.

    Chapter  Google Scholar 

  4. Ewing, B., Hillier, L., Wendl, M. C., and Green, P. (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185.

    PubMed  CAS  Google Scholar 

  5. Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194.

    PubMed  CAS  Google Scholar 

  6. Staden, R. (1979) A strategy of DNA sequencing employing computer programs. Nucleic Acids Res. 6(7), 2601–2610.

    Article  PubMed  CAS  Google Scholar 

  7. Tarhio, J. and Ukkonen, E. (1988) A greedy approximation algorithm for constructing shortest common superstrings. Theoret. Comput. Sci. 57, 131–145.

    Article  Google Scholar 

  8. Smith, T. F. and Waterman, M. S. (1981) Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197.

    Article  PubMed  CAS  Google Scholar 

  9. Gribskov, M., McLachlan, A. D., and Eisenberg, D. (1987) Profile analysis: detection of distantly related proteins. Proc. Natl. Acad. Sci. USA 84, 4355–4358.

    Article  PubMed  CAS  Google Scholar 

  10. Green, P. http://bozeman.mbt.washington.edu/phrap.docs/phrap.html.

  11. Huang, X. (1996) An improved sequence assembly program. Genomics 33, 21–31.

    Article  PubMed  CAS  Google Scholar 

  12. Huang, X. and Madan, A. (1999) CAP3: a DNA sequence assembly program. Genome Res. 9(9), 867–877.

    Article  Google Scholar 

  13. Pearson, W. R. (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 183, 63–98.

    Article  PubMed  CAS  Google Scholar 

  14. Smith, S. W., Overbeek, R., Woese, C. R., Gilbert, W., and Gillevet, P. M. (1994) The genetic data environment and expandable GUI for multiple sequence analysis. Comput. Appl. Biosci. 10(6), 671–675.

    PubMed  CAS  Google Scholar 

  15. Thierry-Mieg, J. and Durbin, R. (1992) ACEDB—a C. elegans database: syntactic definitions for the ACEDB data base manager, 1992 (http://www.acedb.org).

  16. Gordon, D., Abajian, C., and Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Res. 8, 195–202.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Pop, M., Kosack, D. (2004). Using the TIGR Assembler in Shotgun Sequencing Projects. In: Zhao, S., Stodolsky, M. (eds) Bacterial Artificial Chromosomes. Methods in Molecular Biology™, vol 255. Humana Press. https://doi.org/10.1385/1-59259-752-1:279

Download citation

  • DOI: https://doi.org/10.1385/1-59259-752-1:279

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-988-9

  • Online ISBN: 978-1-59259-752-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics