Skip to main content

Mutational Analysis of p53 in Human Tumors

Immunocytochemistry

  • Protocol
p53 Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 234))

Abstract

Mutations of the p53 gene are the most common genetic changes in human malignancies; therefore their detection is of practical importance. In contrast to wild-type p53 in resting normal cells, mutant p53 proteins are easily detectable by immunocytochemical methods due to their abnormally extended half-life. Several methods of immunocytochemistry can be used to analyze the presence and localization of p53 protein in cells or tissues. The most important is immunocytochemical p53 staining of sections from paraffin embedded tissues. This method is used as a relatively reliable surrogate marker for p53 mutations and has the advantage of being easy, fast, and suitable for mass screening of large archival tissue banks. Frozen sections can also be used to detect and localize the p53 proteins. p53 can also be detected in tissue culture cells. p53 can be detected in situ through a secondary antibody coupled to a fluorescent dye or an enzymatic activity that reacts with certain chromogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mao, S.-Y., Javois, L. C., and Kent, U. M. (1999) Overview of antibody use in immunocytochemistry, in Methods in Molecular Medicine, vol 115: Immunocytochemical Methods and Protocols (Javois, J. C., ed), Humana Press, Totowa, pp. 3–10.

    Chapter  Google Scholar 

  2. Sternberger, L. A. (1979) Immunocytochemistry, 2nd ed. Wiley, New York.

    Google Scholar 

  3. Greenblatt, M. S., Bennett, W. P., Hollstein, M., and Harris, C. C. (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855–4878.

    PubMed  CAS  Google Scholar 

  4. Lutzker, S. G. and Levine, A. J. (1996) A functionally inactive p53 protein in teratocarcinoma cells is activated by either DNA damage or cellular differentiation. Nat. Med. 2, 804–810.

    Article  PubMed  CAS  Google Scholar 

  5. Riou, G., Barrois, M., Prost, S., Terrier, M. J., Theodore, C., and Levine, A. J. (1995) The p53 and mdm-2 genes in human testicular germ-cell tumors. Mol. Carcinog. 12, 124–131

    Article  PubMed  CAS  Google Scholar 

  6. Murty, V. V., Bosl, G. J., Houldsworth, J., et al. (1994) Allelic loss and somatic differentiation in human male germ cell tumors. Oncogene 9, 2245–2251.

    PubMed  CAS  Google Scholar 

  7. Peng, H. Q., Hogg, D., Malkin, D., et al. (1993) Mutations of the p53 gene do not occur in testis cancer. Cancer Res. 53, 3574–3578.

    PubMed  CAS  Google Scholar 

  8. Schenkman, N. S., Sesterhenn, I. A., Washington, L., et al. (1995) Increased p53 protein does not correlate with mutations in microdissected human testicular germ cell tumors. J. Urol. 154, 617–621.

    Article  PubMed  CAS  Google Scholar 

  9. Xu, L., Chen, Y. T., Huvos, A. G., et al. (1994) Overexpression of p53 in squamous cell carcinomas of head and neck without apparent gene mutations. Diagn. Mol. Pathol. 3, 83–92.

    Article  PubMed  CAS  Google Scholar 

  10. Kennedy, S. M., MacGeogh, C., Jaffe, R., and Spurr, N. K. (1994) Overexpression of the oncoprotein p53 in primary hepatic tumor of childhood does not correlate with the gene mutations. Hum. Pathol. 25, 438–442.

    Article  PubMed  CAS  Google Scholar 

  11. Ambros, R. A., Ross, J. F., Kallakury, B. V. S., et al. (1995) p53 gene status in endometrial carcinomas showing diffuse positivity for p53 protein by immunohistochemical analysis. Mod. Pathol. 8, 441–445.

    PubMed  CAS  Google Scholar 

  12. King, S. A., Adas, A. A., LiVolsi, V. A., et al. (1995) Expression and mutation analysis of the p53 gene in uterine papillary serous carcinoma. Cancer 75, 2700–2705.

    Article  PubMed  CAS  Google Scholar 

  13. Marchenko, N. D. and Moll, U. M. (1997) Nuclear overexpression of p53 protein does not correlate with gene mutation in primary peritoneal carcinoma. Hum. Pathol. 28, 1002–1006.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang, W., Hu, G., Estey, E., Hester, J., and Deisseroth, A. (1992) Altered conformation of the p53 protein in myeloid leukemia cells and mitogen-stimulated normal blood cells. Oncogene 7, 1645–1647.

    PubMed  CAS  Google Scholar 

  15. Moll, U. M., LaQuaglia, M., Benard, J., and Riou, G. (1995) Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc. Natl. Acad. Sci. USA 92, 4407–4711.

    Article  PubMed  CAS  Google Scholar 

  16. Stommel, J. M., Marchenko, N. D., Jimenez, G. S., Mol, U. M., Hope, T. J., and Wahl, G. M. (1999) A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18, 1660–1672.

    Article  PubMed  CAS  Google Scholar 

  17. Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997) Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299.

    Article  PubMed  CAS  Google Scholar 

  18. Kubbutat, M. H., Jones, S. N., and Vousden, K. H. (1997) Regulation of p53 stability by Mdm2. Nature 387, 299–303.

    Article  PubMed  CAS  Google Scholar 

  19. Maki, C. G., Huibregtse, J. M., and Howley, P. M. (1996) In vivo ubiquitination and proteasome-mediated degradation of p53. Cancer Res. 56, 2649–2654.

    PubMed  CAS  Google Scholar 

  20. Shirangi, T. R., Zaika, A., and Moll, U. M. (2002) Nuclear degradation of p53 occurs during down-regulation of the p53 response after DNA damage. FASEB J. 16, 420–422.

    PubMed  CAS  Google Scholar 

  21. Honda, R., Tanaka, H., and Yasuda, H. (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25–27.

    Article  PubMed  CAS  Google Scholar 

  22. Kubbutat, M. H., Ludwig, R. L., Levine, A. J., and Vousden, K. H. (1999) Analysis of the degradation function of Mdm2. Cell Growth Differ. 10, 87–92.

    PubMed  CAS  Google Scholar 

  23. Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H., and Weissman, A. M. (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951.

    Article  PubMed  CAS  Google Scholar 

  24. Grossman, S. R., Perez, M., Kung, A. L., et al. (1998) p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol. Cell 2, 405–415.

    Article  PubMed  CAS  Google Scholar 

  25. Bottger, A., Bottger, V., Garcia-Echeverria, C., et al. (1997) Molecular characterization of the hdm2-p53 interaction. J. Mol. Biol. 269, 744–756.

    Article  PubMed  CAS  Google Scholar 

  26. Fritsche, M., Haessler, C., and Brandner, G. (1993) Induction of nuclear accumulation of the tumor suppressor protein p53 by DNA-damaging agents. Oncogene 8, 307–318.

    PubMed  CAS  Google Scholar 

  27. Ko, L. and Prives, C. (1996) p53: puzzle and paradigm. Genes Dev. 10, 1054–1072.

    Article  PubMed  CAS  Google Scholar 

  28. Waggoner, S. E., Anderson, S. M., Luce, M. C., Takahashi, H., and Boyd, J. (1996) p53 protein expression and gene analysis in clear cell adenocarcinoma of the vagina and cervix. Gynecol. Oncol. 60, 339–344.

    Article  PubMed  CAS  Google Scholar 

  29. Yewdell, J. W., Gannon, J. V., and Lane, D. P. (1986) Monoclonal antibody analysis of p53 expression in normal and transformed cells. J. Virol. 59, 444–452.

    PubMed  CAS  Google Scholar 

  30. Banks, L., Matlashewski, G., and Crawford, L. (1986) Isolation of human p53 specific monoclonal antibodies and their use in human p53 expression. Eur. J. Biochem. 159, 529–534.

    Article  PubMed  CAS  Google Scholar 

  31. Vojtesek, B., Bartek, J., Midgley, C. A., and Lane, D. P. (1992) An immunochemical analysis of the human nuclear phosphoprotein p53: new monoclonal antibodies and epitope mapping using recombinant p53. J. Immunol. Methods 151, 237–244.

    Article  PubMed  CAS  Google Scholar 

  32. Midgley, C. A., Fisher, C. J., Bartek, J., Vojtesek, B., Lane, D., and Barnes, D. M. (1992) Analysis of p53 expression in human tumours: an antibody raised against p53 expressed in Escherichia coli. J. Cell Sci. 101, 183–189.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Slade, N., Moll, U.M. (2003). Mutational Analysis of p53 in Human Tumors. In: Deb, S., Deb, S.P. (eds) p53 Protocols. Methods in Molecular Biology, vol 234. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-408-5:231

Download citation

  • DOI: https://doi.org/10.1385/1-59259-408-5:231

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-1-58829-106-6

  • Online ISBN: 978-1-59259-408-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics