Skip to main content

Crystallization in Lipidic Cubic Phases

A Case Study with Bacteriorhodopsin

  • Protocol
Membrane Protein Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 228))

Abstract

Twenty to thirty percent of proteins coded by the genome are membrane proteins (1). They form pumps and channels in order to control and guide transport of ions and metabolites. Other membrane proteins function as receptors and are responsible for molecular recognition of hormones and neurotransmitters. In spite of strong efforts, it is extremely difficult to crystallize these proteins and only a few different integral membrane proteins have been crystallized so far (2) and modeled at high resolution (see http://www.mpibpfrankfurt.mpg.de/michel/public/memprotstruct.html). Even in the case of water soluble proteins, for which good approaches to crystallization have been established, considerable efforts are necessary to search for the proper crystallization conditions by screening over a wide range of different parameters (pH, ionic strength, precipitants, protein concentration, etc.). In the case of membrane proteins, one faces even greater problems. Membrane proteins are amphiphilic in nature; in order to be solubilized the use of detergents is inevitable. A major obstacle to overcome is finding the detergent that preserves the stability of the protein. Unfortunately, “what seems to be suited for crystallization of membrane proteins is less suited for their stability” (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallin, E. and von Heijne, G. (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038.

    Article  PubMed  CAS  Google Scholar 

  2. Michel, H. (1991) Crystallization of Membrane Proteins, CRC, Boca Raton, FL.

    Google Scholar 

  3. Michel, H. (1991) General and practical aspects in membrane proteins crystallization, in Crystallization of Membrane Proteins (Michel, H., ed.), CRC, Boca Raton, FL, pp. 73–88.

    Google Scholar 

  4. Michel, H. and Oesterhelt, D. (1980) Three-dimensional crystals of membrane proteins: bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 77, 1283–1285.

    Article  PubMed  CAS  Google Scholar 

  5. Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P., and Landau, E.M. (1997) X-ray structure of bacteriorhodopsin at 2.5 Angstroms from microcrystals grown in lipidic cubic phases. Science 277, 1676–1681.

    Article  PubMed  CAS  Google Scholar 

  6. Luecke, H., Richter, H. T., and Lanyi, J. K. (1998) Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science 280, 1934–1937.

    Article  PubMed  CAS  Google Scholar 

  7. Landau, E. M. & Rosenbusch, J. P. (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. USA 93, 14,532–14,535.

    Article  PubMed  CAS  Google Scholar 

  8. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P., and Lanyi, J. K. (1999) Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291, 899–911.

    Article  PubMed  CAS  Google Scholar 

  9. Sass, H.J., Büldt, G., Gessenich, R., Hehn, D., Neff, D., Schlesinger, R., et al., (2000) Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature 406, 649–653.

    Article  PubMed  CAS  Google Scholar 

  10. Luecke, H. (2000) Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. Biochim. Biophys. Acta 1460, 133–156.

    Article  PubMed  CAS  Google Scholar 

  11. Kolbe, M., Besir, H., Essen, L. O., and Oesterhelt, D. (2000) Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution. Science 288, 1390–1396.

    Article  PubMed  CAS  Google Scholar 

  12. Luecke, H., Schobert, B., Lanyi, J. K., Spudich, E.N., and Spudich, J.L. (2001) Crystal structure of sensory Rhodopsin II at 2.4 Å: Insights into color tuning and transducer interaction. Science 293, 1499–1503.

    Article  PubMed  CAS  Google Scholar 

  13. Royant, A., Nollert, P., Edman, K., Neutze, R., Landau, E. M., Pebay-Peyroula, E., and Navarro, J. (2001) X-ray structure of sensory rhodopsin II at 2.1-Å resolution. Proc. Natl. Acad. Sci. USA 98, 10,131–10,136.

    Article  PubMed  CAS  Google Scholar 

  14. Caffrey, M. (2000) A lipid’s eye view of membrane protein crystallization in mesophases. Curr. Opin. Struct. Biol. 10, 486–497.

    Article  PubMed  CAS  Google Scholar 

  15. Nollert, P., Qiu, H., Caffrey, M., Rosenbusch, J. P., and Landau, E. M. (2001) Molecular mechanism for the crystallization of bacteriorhodopsin in lipidic cubic phases. FEBS Lett. 504, 179–186.

    Article  PubMed  CAS  Google Scholar 

  16. Heberle, J., Büldt, G., Koglin, E., Rosenbusch, J. P., and Landau, E.M. (1998) Assessing the functionality of a membrane protein in a three-dimensional crystal. J. Mol. Biol. 281, 587–592.

    Article  PubMed  CAS  Google Scholar 

  17. Cline, S.W. and Doolittle, W.F. (1987) Efficient transfection of the archaebacterium Halobacterium halobium. J. Bacteriol. 169, 1341–1344.

    PubMed  CAS  Google Scholar 

  18. Oesterhelt, D. and Stoeckenius, W. (1973) Functions of a new photoreceptor membrane. Proc. Natl. Acad. Sci. USA 70, 2853–2857.

    Article  PubMed  CAS  Google Scholar 

  19. Dencher, N. A. and Heyn, M. P. (1978) Formation and properties of bacteriorhodopsin monomers in the non-ionic detergents octyl-beta-D-glucoside and Triton X-100. FEBS Lett. 96, 322–326.

    Article  PubMed  CAS  Google Scholar 

  20. Maeda, A. (1995) Application of FTIR spectroscopy to the structural study on the function of bacteriorhodopsin. Israel J. Client. 35, 387–400.

    CAS  Google Scholar 

  21. Nollert, P. and Landau, E. M. (1998) Enzymic release of crystals from lipidic cubic phases. Biochem. Soc. Trans. 26, 709–713.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Gordeliy, V.I., Schlesinger, R., Efremov, R., Büldt, G., Heberle, J. (2003). Crystallization in Lipidic Cubic Phases. In: Selinsky, B.S. (eds) Membrane Protein Protocols. Methods in Molecular Biology, vol 228. Humana Press. https://doi.org/10.1385/1-59259-400-X:305

Download citation

  • DOI: https://doi.org/10.1385/1-59259-400-X:305

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-124-0

  • Online ISBN: 978-1-59259-400-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics