Skip to main content

Therapeutic Strategies Using Inhibitors of Angiogenesis

  • Protocol
Tumor Suppressor Genes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 223))

Abstract

Angiogenesis, the growth of new capillary blood vessels from preexisting vessels, is a fundamental process that is required for a wide variety of physiologic and pathophysiologic processes (1,2). Examples of physiologic processes that require angiogenesis include wound healing, tissue repair, reproduction, and growth and development (3). Disease states that are associated with malignant angiogenesis include cancer, ophthalmologic disorders such as diabetic retinopathy or macular degeneration, arthritis, psoriasis, and arteriosclerosis (4). Leukemia has also been shown to be dependent on angiogenesis (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman, J. (1990) What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst. 82, 4–6.

    PubMed  CAS  Google Scholar 

  2. O’Reilly, M. S. (2000) Antiangiogenesis: basic principles, in Principles and Practice of the Biologic Therapy of Cancer, 3rd ed. (Rosenberg, S. A., ed.). Lippincott Williams & Wilkins, Philadelphia, pp. 827–843.

    Google Scholar 

  3. Folkman, J. and Shing, Y. (1992) Angiogenesis. J. Biol. Chem. 267, 10931–10934.

    PubMed  CAS  Google Scholar 

  4. Moulton, K. S., Heller, E., Konerding, M. A., Flynn, E., Palinski, W., and Folkman, J. (1999) Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice [see comments]. Circulation 99, 1726–1732.

    PubMed  CAS  Google Scholar 

  5. Perez-Atayde, A. R., Sallan, S. E., Tedrow, U., Connors, S., Allred, E., and Folkman, J. (1997) Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am. J Pathol. 150, 815–821.

    PubMed  CAS  Google Scholar 

  6. Folkman, J. (1971) Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186.

    PubMed  CAS  Google Scholar 

  7. Folkman, J., Watson, K., Ingber, D., and Hanahan, D. (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58–61.

    PubMed  CAS  Google Scholar 

  8. Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364.

    PubMed  CAS  Google Scholar 

  9. Singh, R. K., Gutman, M., Bucana, C. D., Sanchez, R., Llansa, N., and Fidler, I. J. (1995) Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc. Natl. Acad. Sci. USA 92, 4562–4566.

    PubMed  CAS  Google Scholar 

  10. Dark, G. G., Hill, S. A., Prise, V. E., Tozer, G. M., Pettit, G. R., and Chaplin, D. J. (1997) Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature Cancer Res. 57, 1829–1834.

    PubMed  CAS  Google Scholar 

  11. Folkman, J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease, Nature Med. 1, 27–31.

    PubMed  CAS  Google Scholar 

  12. Fidler, I. J., Kerbel, R. S., and Ellis, L. M. (2001) Biology of cancer: angiogenesis, in Cancer Principles and Practice of Oncology, 6th ed. (DeVita, V. T., Hellman, S., an Rosenberg S. A., eds.). Lippincott Williams & Wilkins, Philadelphia, pp. 137–147.

    Google Scholar 

  13. Hamada, J., Cavanaugh, P. G., Lotan, O., and Nicolson, G. L. (1992) Separable growth and migration factors for large-cell lymphoma cells secreted by microvascular endothelial cells derived from target organs for metastasis. Br. J. Cancer 66, 349–354.

    PubMed  CAS  Google Scholar 

  14. Nicosia, R. F., Tchao, R., and Leighton, J. (1986) Interactions between newly formed endothelial channels and carcinoma cells in plasma clot culture. Clin. Exp. Metastasis 4, 91–104.

    PubMed  CAS  Google Scholar 

  15. Rak, J., Filmus, J., and Kerbel, R. S. (1996) Reciprocal paracrine interactions between tumour cells and endothelial cells: the “angiogenesis progression” hypothesis [Review]. Eur. J. Cancer 32A, 2438–2450.

    PubMed  CAS  Google Scholar 

  16. Folkman, J. (1996) Tumor angiogenesis and tissue factor. Nat. Med. 2, 167–168.

    PubMed  CAS  Google Scholar 

  17. Libutti, S. K. and Pluda, J. M. (2000) Antiangiogenesis: clinical applications, in Principles and Practice of the Biologic Therapy of Cancer, 3d ed. (Rosenberg, S. A., ed.) Lippincott Williams & Wilkins, Philadelphia, pp. 844–864.

    Google Scholar 

  18. Folkman, J. (1995) Clinical applications of angiogenesis research. N. Engl. J. Med. 333, 1757–1763.

    PubMed  CAS  Google Scholar 

  19. Hobson, B. and Denekamp, J. (1984) Endothelial proliferation in tumors and normal tissues: continuous labelling studies. Br. J. Cancer 49, 405–413.

    PubMed  CAS  Google Scholar 

  20. Fidler, I. J. and Ellis, L. M. (1994) Letter; comment. Cell 79, 185–188.

    PubMed  CAS  Google Scholar 

  21. Shing, Y., Folkman, J., Sullivan, R., Butterfield, C., Murray, J., and Klagsbrun, M. (1984) Heparin-affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 223, 1296–1299.

    PubMed  CAS  Google Scholar 

  22. Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., and Harvey, V. S. (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985.

    PubMed  CAS  Google Scholar 

  23. Ferrara, N. and Henzel, W. J. (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161, 851–858.

    PubMed  CAS  Google Scholar 

  24. Koch, A. E., Polverini, P. J., Kunkel, S. L., et al. (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis [see comments]. Comment in: Science 1995 Apr 21; 268 (5209):447–448. Science 258, 1798–1801.

    PubMed  CAS  Google Scholar 

  25. Kuniyasu, H., Yasui, W., Shinohara, H., et al. (2000) Induction of angiogenesis by hyperplastic colonic mucosa adjacent to colon cancer. Am. J. Pathol. 157, 1523–1535.

    PubMed  CAS  Google Scholar 

  26. Grant, D. S., Kleinman, H. K., Goldberg, I. D., et al. (1993) Scatter factor induces blood vessel formation in vivo. Proc. Natl. Acad. Sci. USA 90, 1937–1941.

    PubMed  CAS  Google Scholar 

  27. Roberts, A. B., Sporn, M. B., Assoian, R. K., et al. (1986) Transforming growth factor type-beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl. Acad. Sci. USA 83, 4167–4171.

    PubMed  CAS  Google Scholar 

  28. O’Mahony, C. A., Albo, D., Tuszynski, G. P., and Berger, D. H. (1998) Transforming growth factor-beta 1 inhibits generation of angiostatin by human pancreatic cancer cells. Surgery 124, 388–393.

    Google Scholar 

  29. Jackson, D., Volpert, O., Bouck, N., and Linzer, D. (1994) Stimulation and inhibition of angiogenesis by placental proliferin and proliferin-related protein. Science 266, 1581–1585.

    PubMed  CAS  Google Scholar 

  30. Ribatti, D., Presta, M., Vacca, A., et al. (1999) Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 93, 2627–2636.

    PubMed  CAS  Google Scholar 

  31. Iruela-Arispe, M. L. and Dvorak, H. F. (1997) Angiogenesis: a dynamic balance of stimulators and inhibitors. Thromb. Haemost. 78, 672–677.

    PubMed  CAS  Google Scholar 

  32. Good, D. J., Polverini, P. J., Rastinejad, F., et al. (1990) A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Acad. Sci. USA 87, 6624–6628.

    PubMed  CAS  Google Scholar 

  33. Rastinejad, F., Polverini, P. J., and Bouck, N. P. (1989) Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56, 345–355.

    PubMed  CAS  Google Scholar 

  34. Dameron, K. M., Volpert, O. V., Tainsky, M. A., and Bouck, N. (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582–1584.

    PubMed  CAS  Google Scholar 

  35. Dawson, D. W., Volpert, O. V., Gillis, P., et al. (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285, 245–248.

    PubMed  CAS  Google Scholar 

  36. Folkman, J. (1995) Tumour angiogenesis, in The Molecular Basis of Cancer. (Mendelsohn, P. M. H., Israel, M. A., and Liotta, L. A. ed.). Saunders, Philadelphia, 1995.

    Google Scholar 

  37. Arap, W., Pasqualini, R., and Ruoslahti, E. (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377–380.

    PubMed  CAS  Google Scholar 

  38. Konerding, M. A., Malkusch, W., Klapthor, B., et al. (1999) Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br. J. Cancer 80, 724–732.

    PubMed  CAS  Google Scholar 

  39. Jain, R. K. (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy [Review] [28 refs]. Nat. Med. 7, 987–989.

    PubMed  CAS  Google Scholar 

  40. Orlidge, A. and D–Amore, P. (1987) Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J. Cell Biol. 105, 1455–1462.

    PubMed  CAS  Google Scholar 

  41. Jain, R. K. and Baxter, L. T. (1988) Mechanisms of heterogeneous distribution of monocloncal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. 48, 7022–7032.

    PubMed  CAS  Google Scholar 

  42. Jain, R. K. (1988) Determinants of tumor blood flow: a review. Cancer Res. 48, 2641–2658.

    PubMed  CAS  Google Scholar 

  43. Jain, R. K. (1989) Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J. Natl. Cancer Inst. 81, 570–576.

    PubMed  CAS  Google Scholar 

  44. Brown, L. F., Guidi, A. J., Schnitt, S. J., et al. (1999) Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast Clin. Cancer Res. 5, 1041–1056.

    PubMed  CAS  Google Scholar 

  45. Dvorak, H. F. (1986) Tumors: wounds that do not heal. N. Engl. J. Med. 315, 1650–1659.

    PubMed  CAS  Google Scholar 

  46. Dvorak, H. F., Nagy, J. A., Dvorak, J. T., and Dvorak, A. M. (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am. J. Pathol. 133, 95–109.

    PubMed  CAS  Google Scholar 

  47. Nagy, J. A., Brown, L. F., Senger, D. R., et al. (1989) Pathogenesis of tumor stroma generation: a critical role for leaky blood vessels and fibrin deposition. Biochim. Biophys. Acta 948, 305–326.

    PubMed  CAS  Google Scholar 

  48. Gerlowski, L. E. and Jain, R. K. (1986) Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 31, 288–305.

    PubMed  CAS  Google Scholar 

  49. Liotta, L. A., Stetler-Stevenson, W. G., and Steeg, P. S. (1991) Cancer invasion and metastasis: positive and negative regulatory elements. Cancer Invest. 9, 543–551.

    PubMed  CAS  Google Scholar 

  50. Stetler-Stevenson, W. G. (1999) Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J. Clin. Invest. 103, 1237–1241.

    PubMed  CAS  Google Scholar 

  51. Kleiner, D. E. and Stetler-Stevenson, W. G. (1999) Matrix metalloproteinases and metastasis. [Review]. Cancer Chemother. Pharmacol. 43(Suppl.), S42–S51.

    PubMed  CAS  Google Scholar 

  52. Mohle, R., Green, D., Moore, M. A., Nachman, R. L., and Rafii, S. (1997) Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc. Natl. Acad. Sci. USA 94, 663–668.

    PubMed  CAS  Google Scholar 

  53. Haralabopoulos, G. C., Grant, D. S., Kleinman, H. K., and Maragoudakis, M. E. (1997) Thrombin promotes endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. Am. J. Physiol. 273, C239–C245.

    PubMed  CAS  Google Scholar 

  54. Tsopanoglou, N. E. and Maragoudakis, M. E. (1999) On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by up-regulation of its receptors. J. Biol. Chem. 274, 23969–23976.

    PubMed  CAS  Google Scholar 

  55. Baker, E. A., Bergin, F. G., and Leaper, D. J. (2000) Plasminogen activator system, vascular endothelial growth factor, and colorectal cancer progression. Mol. Pathol. 53, 307–312.

    PubMed  CAS  Google Scholar 

  56. Brodsky, S., Chen, J., Lee, A., Akassoglou, K., Norman, J., and Goligorsky, M. S. (2001) Plasmin-dependent and-independent effects of plasminogen activators and inhibitor-1 on ex vivo angiogenesis. Am. J. Physiol.—Heart Circ. Physiol. 281, H1784–H1792.

    PubMed  CAS  Google Scholar 

  57. Browder, T., Folkman, J., and Pirie-Shepherd, S. (2000) The hemostatic system as a regulator of angiogenesis [Review] [67 refs]. J. Biol. Chem. 275, 1521–1524.

    PubMed  CAS  Google Scholar 

  58. Stefansson, S., Petitclerc, E., Wong, M. K., McMahon, G. A., Brooks, P. C., and Lawrence, D. A. (2001) Inhibition of angiogenesis in vivo by plasminogen activator inhibitor-1. J. Biol. Chem. 276, 8135–8141.

    PubMed  CAS  Google Scholar 

  59. Stefansson, S. and Lawrence, D. A. (1996) The serpin PAI-1 inhibits cell migration by blocking integrin avb3 binding to vitronectin. Nature 383, 441–443.

    PubMed  CAS  Google Scholar 

  60. O’Reilly, M. S., Pirie-Shepherd, S., Lane, W. S., and Folkman, J. (1999) Antiangiogenic activity of the cleaved conformation of the serpin antithrombin [see comments]. Comment in: Science 1999 Sep 17; 285(5435):1861–3, Science 285, 1926–1928.

    Google Scholar 

  61. Stathakis, P., Fitzgerald, M., Matthias, L. J., Chesterman, C. N., and Hogg, P. J. (1997) Generation of angiostatin by reduction and proteolysis of plasmin. J. Biol. Chem. 272, 20641–20645.

    PubMed  CAS  Google Scholar 

  62. Gately, S., Twardowski, P., Stack, M. S., et al. (1997) The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc. Natl. Acad. Sci. USA 94, 10868–10872.

    PubMed  CAS  Google Scholar 

  63. Moses, M. A., Sudhalter, J., and Langer, R. (1990) Identification of an inhibitor of neovascularization from cartilage. Science 248, 1408–1410.

    PubMed  CAS  Google Scholar 

  64. Moses, M. A. (1997) The regulation of neovascularization by matrix metalloproteinases and their inhibitors. Stem Cells 15, 180–189.

    PubMed  CAS  Google Scholar 

  65. Moses, M. A., Wiederschain, D., Wu, I., et al. (1999) Troponin I is present in human cartilage and inhibits angiogenesis. Proc. Natl. Acad. Sci. USA 96, 2645–2650.

    PubMed  CAS  Google Scholar 

  66. Tamargo, R. J., Bok, R. A., and Brem, H. (1991) Angiogenesis inhibition by minocycline. Cancer Res. 51, 672–675.

    PubMed  CAS  Google Scholar 

  67. Guerin, C., Laterra, J., Masnyk, T., Golub, L. M., and Brem, H. (1992) Selective endothelial growth inhibition by tetracyclines that inhibit collagenase. Biochem. Biophys. Res. Commun. 188, 740–745.

    PubMed  CAS  Google Scholar 

  68. Rudek, M. A., Figg, W. D., Dyer, V., et al. (2001) Phase I clinical trial of oral COL-3, a matrix metalloproteinase inhibitor, in patients with refractory metastatic cancer. J. Clin. Oncol. 19, 584–592.

    PubMed  CAS  Google Scholar 

  69. Gatto, C., Rieppi, M., Borsotti, P., et al. (1999) BAY 12-9566, a novel inhibitor of matrix metalloproteinases with antiangiogenic activity. Clin. Cancer Res. 5, 3603–3607.

    PubMed  CAS  Google Scholar 

  70. Zucker, S., Cao, J., and Chen, W. T. (2000) Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment [Review] [75 refs]. Oncogene 19, 6642–6650.

    PubMed  CAS  Google Scholar 

  71. Shalinsky, D. R., Brekken, J., Zou, H., et al. (1999) Marked antiangiogenic and antitumor efficacy of AG3340 in chemoresistant human non-small cell lung cancer tumors: single agent and combination chemotherapy studies. Clin. Cancer Res. 5, 1905–1917.

    PubMed  CAS  Google Scholar 

  72. O’Reilly, M. S., Holmgren, L., Shing, Y., et al. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma [see comments]. Comment in: Cell 1994 Oct 21; 79(2):185–8, Cell 79, 315–328.

    Google Scholar 

  73. O’Reilly, M. S., Wiederschain, D., Stetler-Stevenson, W. G., Folkman, J., and Moses, M. A. (1999) Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J. Biol. Chem. 274, 29568–29571.

    Google Scholar 

  74. Dong, Z., Kumar, R., Yang, X., and Fidler, I. J. (1997) Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88, 801–810.

    PubMed  CAS  Google Scholar 

  75. Dong, Z., Yoneda, J., Kumar, R., and Fidler, I. J. (1998) Angiostatin-mediated suppression of cancer metastases by primary neoplasms engineered to produce granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 188, 755–763.

    PubMed  CAS  Google Scholar 

  76. McGeehan, G. M., Becherer, J. D., Bast, R. C. Jr., et al. (1994) Regulation of tumour necrosis factor-alpha processing by a metalloproteinase inhibitor. Nature 370, 558–561.

    PubMed  CAS  Google Scholar 

  77. Gearing, A. J., Beckett, P., Christodoulou, M., et al. (1994) Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature 370, 555–557.

    PubMed  CAS  Google Scholar 

  78. Arribas, J., Coodly, L., Vollmer, P., Kishimoto, T. K., Rose-John, S., and Massague, J. (1996) Diverse cell surface protein ectodomains are shed by a system sensitive to metalloprotease inhibitors. J. Biol. Chem. 271, 11376–11382.

    PubMed  CAS  Google Scholar 

  79. Arribas, J. and Massague, J. (1995) Transforming growth factor-alpha and beta-amyloid precursor protein share a secretory mechanism. J. Cell Biol. 128, 433–441.

    PubMed  CAS  Google Scholar 

  80. Walcheck, B., Kahn, J., Fisher, J. M., et al. (1996) Neutrophil rolling altered by inhibition of L-selectin shedding in vitro. Nature 380, 720–723.

    PubMed  CAS  Google Scholar 

  81. Feehan, C., Darlak, K., Kahn, J., Walcheck, B., Spatola, A. F., and Kishimoto, T. K. (1996) Shedding of the lymphocyte L-selectin adhesion molecule is inhibited by a hydroxamic acid-based protease inhibitor. Identification with an L-selectin-alkaline phosphatase reporter. J. Biol. Chem. 271, 7019–7024.

    PubMed  CAS  Google Scholar 

  82. Bennett, T. A., Lynam, E. B., Sklar, L. A., and Rogelj, S. (1996) Hydroxamate-based metalloprotease inhibitor blocks shedding of L-selectin adhesion molecule from leukocytes: functional consequences for neutrophil aggregation. J. Immunol. 156, 3093–3097.

    PubMed  CAS  Google Scholar 

  83. Mullberg, J., Durie, F. H., Otten-Evans, C., et al. (1995) A metalloprotease inhibitor blocks shedding of the IL-6 receptor and the p60 TNF receptor. J. Immunol. 155, 5198–5205.

    PubMed  CAS  Google Scholar 

  84. Couet, J., Sar, S., Jolivet, A., Hai, M. T., Milgrom, E., and Misrahi, M. (1996) Shedding of human thyrotropin receptor ectodomain. Involvement of a matrix metalloprotease. J. Biol. Chem. 271, 4545–4552.

    PubMed  CAS  Google Scholar 

  85. Levi, E., Fridman, R., Miao, H. Q., Ma, Y. S., Yayon, A., and Vlodavsky, I. (1996) Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc. Natl. Acad. Sci. USA 93, 7069–7074.

    PubMed  CAS  Google Scholar 

  86. Suzuki, M., Raab, G., Moses, M. A., Fernandez, C. A., and Klagsbrun, M. (1997) Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site. J. Biol. Chem. 272, 31730–31737.

    PubMed  CAS  Google Scholar 

  87. Gately, S., Twardowski, P., Stack, M. S., et al. (1996) Human prostate carcinoma cells express enzymatic activity that converts human plasminogen to the angiogenesis inhibitor, angiostatin. Cancer Res. 56, 4887–4890.

    PubMed  CAS  Google Scholar 

  88. Patterson, B. C. and Sang, Q. X. A. (1997) Angiostatin-converting enzyme activities of MMP-7 and MMP-9. J. Biol. Chem. 272, 28823–28,825.

    PubMed  CAS  Google Scholar 

  89. Falcone, D., Khan, K. M. F., Layne, T., and Fernandes, L. (1998) Macrophage formation of angiostatin during inflammation. J. Biol. Chem. 273, 31480–31485.

    PubMed  CAS  Google Scholar 

  90. Clapp, C., Martial, J. A., Guzman, R. C., Rentier-Delrue, F., and Weiner, R. I. (1993) The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 133, 1292–1299.

    PubMed  CAS  Google Scholar 

  91. D’Angelo, G., Struman, I., Martial, J., and Weiner, R. I. (1995) Activation of mitogen-activated protein kinases by vascular endothelial growth factor and basic fibroblast growth factor in capillary endothelial cells is inhibited by the antiangiogenic factor 16-kDa N-terminal fragment of prolactin. Proc. Natl. Acad. Sci. USA 92, 6374–6378.

    PubMed  Google Scholar 

  92. Ferrara, N., Clapp, C., and Weiner, R. I. (1991) The 16K fragment of prolactin specifically inhibits basal or FGF stimulated growth of capillary endothelial cells. Endocrinology 129, 896–900.

    PubMed  CAS  Google Scholar 

  93. Struman, I., Bentzien, F., Lee, H., et al. (1999) Opposing actions of intact and N-terminal fragments of human prolactin/growth hormone family members on angiogenesis: an efficient mechanism for the regulation of angiogenesis. Proc. Natl. Acad. Sci. USA 96, 1246–1251.

    PubMed  CAS  Google Scholar 

  94. Maione, T. E., Gray, G. S., Petro, J., et al. (1990) Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 247, 77–79.

    PubMed  CAS  Google Scholar 

  95. Gupta, S. K., Hassel, T., and Singh, J. P. (1995) A potent inhibitor of endothelial cell proliferation is generated by proteolytic cleavage of the chemokine platelet factor 4. Proc. Natl. Acad. Sci. USA 92, 7799–7803.

    PubMed  CAS  Google Scholar 

  96. Tolsma, S. S., Volpert, O. V., Good, D. J., Frazier, W. A., Polverini, P. J., and Bouck, N. (1993) Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J. Cell Biol. 122, 497–511.

    PubMed  CAS  Google Scholar 

  97. Nelson, J., Allen, W. E., Scott, W. N., Bailie, J. R., Walker, B., and McFerran, N. V. (1995) Murine epidermal growth factor (EGF) fragment (33–42) inhibits both EGF-and laminin-dependent endothelial cell motility and angiogenesis. Cancer Res. 55, 3772–3776.

    PubMed  CAS  Google Scholar 

  98. Grant, D. S., Tashiro, K.-I., Sequi-Real, B., Yamada, Y., Martin, G. R., and Kleinman, H. K. (1989) Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58, 933–943.

    PubMed  CAS  Google Scholar 

  99. Homandberg, G. A., Williams, J. E., Grant, D., B., S., and Eisenstein, R. (1985) Heparin-binding fragments of fibronectin are potent inhibitors of endothelial cell growth. Am. J. Pathol. 120, 327–332.

    PubMed  CAS  Google Scholar 

  100. O’Reilly, M. S., Boehm, T., Shing, Y., et al. (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.

    Google Scholar 

  101. Boehm, T., Folkman, J., Browder, T., and O’Reilly, M. S. (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance [see comments]. Comment in: Nature 1997 Nov 27; 390(6658), 335–6. Comment in: Nature 1998 Jan 29; 391(6666), 450. Comment in: Nature 1998 May 14; 393(6681), 97. Nature 390, 404–407.

    PubMed  CAS  Google Scholar 

  102. Moses, M. A., Wiederschain, D., Loughlin, K. R., Zurakowski, D., Lamb, C. L., and Freeman, M. R. (1998) Increased incidence of matrix metalloproteinases in urine of cancer patients. Cancer Res. 58, 1395–1399.

    PubMed  CAS  Google Scholar 

  103. Camphausen, K., Moses, M. A., Beecken, W., Khan, M. K., Folkman, J., and O’Reilly, M. S. (2001) Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res. 61, 2207–2211.

    PubMed  CAS  Google Scholar 

  104. O’Reilly, M. S., Holmgren, L., Chen, C., and Folkman, J. (1996) Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat. Med. 2, 689–692.

    Google Scholar 

  105. Holmgren, L., O’Reilly, M. S., and Folkman, J. (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med. 1, 149–153.

    PubMed  CAS  Google Scholar 

  106. Laird, A. D., Vajkoczy, P., Shawver, L. K., et al. (2000). SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res. 60, 4152–4160.

    PubMed  CAS  Google Scholar 

  107. Shaheen, R. M., Davis, D. W., Liu, W., et al. (1999) Antiangiogenic therapy targeting the tyrosine kinase receptor for vascular endothelial growth factor receptor inhibits the growth of colon cancer liver metastasis and induces tumor and endothelial cell apoptosis. Cancer Res. 59, 5412–5416.

    PubMed  CAS  Google Scholar 

  108. Burrows, F. J. and Thorpe, P. E. (1993) Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature. Proc. Natl. Acad. Sci. USA 90, 8996–9000.

    PubMed  CAS  Google Scholar 

  109. Huang, X., Molema, G., King, S., Watkins, L., Edgington, T. S., and Thorpe, P. E. (1997) Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature [see comments]. Comment in: Science 1997 Jan 24; 275(5299): 482–4. Science 275, 547–550.

    PubMed  CAS  Google Scholar 

  110. Tozer, G. M., Prise, V. E., Wilson, J., et al. (1999) Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res. 59, 1626–1634.

    PubMed  CAS  Google Scholar 

  111. Ellerby, H. M., Arap, W., Ellerby, L. M., et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med. 5, 1032–1038.

    Google Scholar 

  112. Pasqualini, R., Koivunen, E., Kain, R., et al. (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 60, 722–727.

    PubMed  CAS  Google Scholar 

  113. Kandel, J., Bossy-Wetzel, E., Radvany, F., Klagsburn, M., Folkman, J., and Hanahan, D. (1991) Neovascularization is associated with a switch to the export of bFGF in the multi-step development of fibrosarcoma. Cell 66, 1095–1104.

    PubMed  CAS  Google Scholar 

  114. Nickoloff, B. J., Mitra, R. S., Varani, J., Dixit, V. M., and Polverini, P. J. (1994) Aberrant production of interleukin-8 and thrombospondin-1 by psoriatic keratinocytes mediates angiogenesis. Am. J. Path. 144, 820–828.

    PubMed  CAS  Google Scholar 

  115. Heyns, A. D., Eldor, A., Vlodavsky, I., Kaiser, N., Fridman, R., and Panet, A. (1985) The antiproliferative effect of interferon and the mitogenic activity of growth factors are independent cell cycle events. Studies with vascular smooth muscle cells and endothelial cells. Exp. Cell Res. 161, 297–306.

    PubMed  CAS  Google Scholar 

  116. Friesel, R., Komoriya, A., and Maciag, T. (1987) Inhibition of endothelial cell proliferation by gamma-interferon. J. Cell Biol. 104, 689–696.

    PubMed  CAS  Google Scholar 

  117. Ruszczak, Z., Detmar, M., Imcke, E., and Orfanos, C. E. (1990) Effects of rIFN alpha, beta, and gamma on the morphology, proliferation, and cell surface antigen expression of human dermal microvascular endothelial cells in vitro. J. Invest. Dermatol. 95, 693–699.

    PubMed  CAS  Google Scholar 

  118. Hicks, C., Breit, S. N., and Penny, R. (1989) Response of microvascular endothelial cells to biological response modifiers. Immunol. Cell Biol. 67, 271–277.

    PubMed  CAS  Google Scholar 

  119. Angiolillo, A. L., Sgadari, C., Taub, D. D., et al. (1995) Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J. Exp. Med. 182, 155–162.

    PubMed  CAS  Google Scholar 

  120. Sgadari, C., Angiolillo, A. L., Cherney, B. W., et al. (1996) Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo. Proc. Natl. Acad. Sci. USA 93, 13791–13796.

    PubMed  CAS  Google Scholar 

  121. Voest, E. E., Kenyon, B. M., O’Reilly, M. S., Truitt, G., D’Amato, R. J., and Folkman, J. (1995) Inhibition of angiogenesis in vivo by interleukin 12. J. Natl. Cancer Inst. 87, 581–586.

    PubMed  CAS  Google Scholar 

  122. Dinney, C. P., Bielenberg, D. R., Perrotte, P., et al. (1998) Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-alpha administration. Cancer Res. 58, 808–814.

    PubMed  CAS  Google Scholar 

  123. Ezekowitz, R. A. B., Mulliken, J. B., and Folkman, J. (1992) Interferon alfa-2a therapy For life-threatening hemangiomas of infancy. N. Engl. J. Med. 326, 1456–1463.

    PubMed  CAS  Google Scholar 

  124. Orchard, P., Smith, C., Woods, W., Dehner, L. P., Day, D. L., and Shapiro, R. S. (1989) Treatment of hemangioendothiomas with alpha interferon. Lancet 2, 565–567.

    PubMed  CAS  Google Scholar 

  125. White, C. M., Sondheimer, H. M., Crouch, E. C., Wilson, H., and Fan, L. F. (1989) Treatment of pulmonary hemangiomatosis with recombinant interferon alfa-2a. N. Engl. J. Med. 320, 1197–1200.

    PubMed  CAS  Google Scholar 

  126. Mitsuyasu, R. T. (1991) Interferon alpha in the treatment of AIDS-related Kaposi’s sarcoma. Br. J. Haematol. 79(Suppl. 1), 69–73.

    PubMed  Google Scholar 

  127. Kaban, L. B., Mulliken, J. B., Ezekowitz, R. A., Ebb, D., Smith, P. S., and Folkman, J. (1999) Antiangiogenic therapy of a recurrent giant cell tumor of the mandible with inter-feron alfa-2a [see comments]. Pediatrics 103, 1145–1149.

    PubMed  CAS  Google Scholar 

  128. Stadler, W. M., Kuzel, T. M., Raghavan, D., et al. (1997) Metastatic bladder cancer: advances in treatment. Eur. J. Cancer 33(Suppl. 1), S23–S26.

    PubMed  CAS  Google Scholar 

  129. Nanus, D. M., Schmitz-Drager, B. J., Motzer, R. J., et al. (1993) Expression of basic fibroblast growth factor in primary human renal tumors: correlation with poor survival. J. Natl. Cancer Inst. 85, 1597–1599.

    PubMed  CAS  Google Scholar 

  130. Nguyen, M., Watanabe, H., Budson, A. E., Richie, J. P., and Folkman, J. (1993) Elevated levels of the angiogenic peptide basic fibroblast growth factor in urine of bladder cancer patients. J. Natl. Cancer Inst. 85, 241–242.

    PubMed  CAS  Google Scholar 

  131. Brouty-Boye, D. and Zetter, B. R. (1980) Inhibition of cell motility by interferon. Science 206, 516–518.

    Google Scholar 

  132. Slaton, J. W., Perrotte, P., Inoue, K., Dinney, C. P., and Fidler, I. J. (1999) Interferon-alpha-mediated down-regulation of angiogenesis-related genes and therapy of bladder cancer are dependent on optimization of biological dose and schedule. Clin. Cancer Res. 5, 2726–2734.

    PubMed  CAS  Google Scholar 

  133. Solorzano, C. C., Baker, C. H., Tsan, R., et al. (2001) Optimization for the blockade of epidermal growth factor receptor signaling for therapy of human pancreatic carcinoma. Clin. Cancer Res. 7, 2563–2572.

    PubMed  CAS  Google Scholar 

  134. Baker, C. H., McCarty, M. F., Tsan, R., and Fidler, I. J. (2001) Phenotypic diversity of organ-specific endothelial cells. Proc. Amer. Assoc. Cancer Res. 42, 2186 (abstr.).

    Google Scholar 

  135. Tsai, J. C., Goldman, C. K., and Gillespie, G. Y. (1995) Vascular endothelial growth factor in human glioma cell lines: induced secretion by EGF, PDGF-BB, and bFGF. J. N eurosurg. 82, 864–873.

    CAS  Google Scholar 

  136. Brogi, E., Wu, T., Namiki, A., and Isner, J. M. (1994) Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circulation 90, 649–652.

    PubMed  CAS  Google Scholar 

  137. Uehara, H., Kim, S. J., Karashima, T., Zheng, L., and Fidler, I. J. (2001) Blockade of the PDGF-R signaling by STI571 inhibits angiogenesis and growth of human prostate cancer cells in the bone of nude mice. Proc. Amer. Assoc. Cancer Res. 42, 2192 (abstr.).

    Google Scholar 

  138. Chakravarti, A., Loeffler, J. S., and Dyson, N. J. (2002) Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res. 62, 200–207.

    PubMed  CAS  Google Scholar 

  139. Viloria-Petit, A., Crombet, T., Jothy, S., et al. (2001) Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res. 61, 5090–5101.

    PubMed  CAS  Google Scholar 

  140. Yano, S., Herbst, R. S., Shinohara, H., et al. (2000) Treatment for malignant pleural effusion of human lung adenocarcinoma by inhibition of vascular endothelial growth factor receptor tyrosine kinase phosphorylation. Clin. Cancer Res. 6, 957–965.

    PubMed  CAS  Google Scholar 

  141. Laird, A. D., Vajkoczy, P., Shawver, L. K., et al. (2000) SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res. 60, 4152–4160.

    PubMed  CAS  Google Scholar 

  142. Ciardiello, F., Bianco, R., Damiano, V., et al. (2000) Antiangiogenic and antitumor activity of anti-epidermal growth factor receptor C225 monoclonal antibody in combination with ascular endothelial growth factor antisense oligonucleotide in human GEO colon cancer cells. Clin. Cancer Res. 6, 3739–3747.

    PubMed  CAS  Google Scholar 

  143. Jakkula, M., Le Cras, T. D., Gebb, S., et al. (2000) Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am. J. Physiol.—Lung Cell. Mol. Physiol. 279, L600–L607.

    PubMed  CAS  Google Scholar 

  144. Alon, T., Hemo, I., Itin, A., Pelee, J., Stone, J., and Keshet, E. (1995) VEGF acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat. Med. 1, 1024–1028.

    PubMed  CAS  Google Scholar 

  145. Verheul, H. M., Hoekman, K., Lupu, F., et al. (2000) Platelet and coagulation activation with vascular endothelial growth factor generation in soft tissue sarcomas. Clin. Cancer Res. 6, 166–171.

    PubMed  CAS  Google Scholar 

  146. Nor, J. E., Christensen, J., Mooney, D. J., and Polverini, P. J. (1999) VEGF-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am. J. Pathol. 154, 375–384.

    PubMed  CAS  Google Scholar 

  147. Taraboletti, G., Morbidelli, L., Donnini, S., et al. (2000) The heparin binding 25 kDa fragment of thrombospondin-1 promotes angiogenesis and modulates gelatinase and TIMP-2 production in endothelial cells. FASEB J. 14, 1674–1676.

    PubMed  CAS  Google Scholar 

  148. Gorelik, E. (1983) Concominant tumor immunity and the resistance to a second tumor challenge. Adv. Cancer Res. 39, 71–120.

    PubMed  CAS  Google Scholar 

  149. Prehn, R. T. (1991) The inhibition of tumor growth by tumor mass. Cancer Res. 51, 2–4.

    PubMed  CAS  Google Scholar 

  150. Hari, D., Beckett, M. A., Sukhatme, V. P., et al. (2000) Angiostatin induces mitotic cell death of proliferating endothelial cells. Mol. Cell Biol. Res. Commun. 3, 277–282.

    PubMed  CAS  Google Scholar 

  151. Lucas, R., Holmgren, L., Garcia, I., et al. (1998) Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood 92, 4730–4741.

    PubMed  CAS  Google Scholar 

  152. Claesson-Welsh, L., Welsh, M., Ito, N., et al. (1998) Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc. Natl. Acad. Sci. USA 95, 5579–5583.

    PubMed  CAS  Google Scholar 

  153. Stack, M. S., Gately, S., Bafetti, L. M., Enghild, J. J., and Soff, G. A. (1999) Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation. Biochem. J. 340, 77–84.

    PubMed  CAS  Google Scholar 

  154. Moser, T. L., Stack, M. S., Asplin, I., et al. (1999) Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc. Natl. Acad. Sci. USA 96, 2811–2816.

    PubMed  CAS  Google Scholar 

  155. Troyanovsky, B., Levchenko, T., Mansson, G., Matvijenko, O., and Holmgren, L. (2001) Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation [see comments]. Comment in: J. Cell Biol. 2001 Mar 19; 152(6):F35–6. J. Cell Biol. 152, 1247–1254.

    PubMed  CAS  Google Scholar 

  156. Yamaguchi, N., Anand-Apte, B., Lee, M., et al. (1999) Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J. 18, 4414–4423.

    PubMed  CAS  Google Scholar 

  157. Read, T. A., Farhadi, M., Bjerkvig, R., et al. (2001) Intravital microscopy reveals novel antivascular and antitumor effects of endostatin delivered locally by alginate-encapsulated cells. Cancer Res. 61, 6830–6837.

    PubMed  CAS  Google Scholar 

  158. Hohenester, E., Sasaki, T., Olsen, B. R., and Timpl, R. (1998) Crystal structure of the angiogenesis inhibitor endostatin at 1.5 A resolution. EMBO J. 17, 1656–1664.

    PubMed  CAS  Google Scholar 

  159. Ding, Y. H., Javaherian, K., Lo, K. M., et al. (1998) Zinc-dependent dimers observed in crystals of human endostatin. Proc. Natl. Acad. Sci. USA 95, 10443–10448.

    PubMed  CAS  Google Scholar 

  160. Dhanabal, M., Ramchandran, R., Waterman, M. J. F., et al. (1999) Endostatin induces endothelial cell apoptosis. J. Biol. Chem. 274, 11721–11726.

    PubMed  CAS  Google Scholar 

  161. MacDonald, N. J., Shivers, W. Y., Narum, D. L., et al. (2001) Endostatin binds tropomyosin. A potential modulator of the antitumor activity of endostatin. J. Biol. Chem. 276, 25190–25196.

    PubMed  CAS  Google Scholar 

  162. Rehn, M., Veikkola, T., Kukk-Valdre, E., et al. (2001) Interaction of endostatin with integrins implicated in angiogenesis. Proc. Natl. Acad. Sci. USA 98, 1024–1029.

    PubMed  CAS  Google Scholar 

  163. Wickstrom, S. A., Veikkola, T., Rehn, M., Pihlajaniemi, T., Alitalo, K., and Keski-Oja, J. (2001) Endostatin-induced modulation of plasminogen activation with concomitant loss of focal adhesions and actin stress fibers in cultured human endothelial cells. Cancer Res. 61, 6511–6516.

    PubMed  CAS  Google Scholar 

  164. Huang, X., Wong, M. K., Zhao, Q., et al. (2001) Soluble recombinant endostatin purified from Escherichia coli: antiangiogenic activity and antitumor effect. Cancer Res. 61, 478–481.

    PubMed  CAS  Google Scholar 

  165. Ramchandran, R., Dhanabal, M., Volk, R., et al. (1999) Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin. Biochem. Biophys. Res. Commun. 255, 735–739.

    PubMed  CAS  Google Scholar 

  166. Xu, J., Rodriguez, D., Petitclerc, E., et al. (2001) Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J. Cell Biol. 154, 1069–1079.

    PubMed  CAS  Google Scholar 

  167. Petitclerc, E., Boutaud, A., Prestayko, A., et al. (2000) New functions for non-collagenous domains of human collagen type I V. Novel integrin ligands inhibiting angiogenesis and tumor growth i vivo. J. Biol. Chem. 275, 8051–8061.

    PubMed  CAS  Google Scholar 

  168. Colorado, P. C., Torre, A., Kamphaus, G., et al. (2000) Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res. 60, 2520–2526.

    PubMed  CAS  Google Scholar 

  169. Bentzien, F., Struman, I., Martini, J. F., Martial, J., and Weiner, R. (2001) Expression of the antiangiogenic factor 16K hPRL in human HCT116 colon cancer cells inhibits tumor growth in Rag1(−/−) mice. Cancer Res. 61, 7356–7362.

    PubMed  CAS  Google Scholar 

  170. Sakamato, N., Iwahana, M., Tanaka, N. G., and Osaka, Y. (1991) Inhibition of angiogenesis and tumor growth by a synthetic laminin peptide, CDPGYIGSR-NH2. Cancer Res. 51, 903–906.

    Google Scholar 

  171. Pike, S. E., Yao, L., Jones, K. D., et al. (1998) Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J. Exp. Med. 188, 2349–2356.

    PubMed  CAS  Google Scholar 

  172. Pike, S. E., Yao, L., Setsuda, J., et al. (1999) Calreticulin and calreticulin fragments are endothelial cell inhibitors that suppress tumor growth. Blood 94, 2461–2468.

    PubMed  CAS  Google Scholar 

  173. Yao, L., Pike, S. E., Setsuda, J., et al. (2000) Effective targeting of tumor vasculature by the angiogenesis inhibitors vasostatin and interleukin-12. Blood 96, 1900–1905.

    PubMed  CAS  Google Scholar 

  174. Larsson, H., Sjoblom, T., Dixelius, J., et al. (2000) Antiangiogenic effects of latent antithrombin through perturbed cell-matrix interactions and apoptosis of endothelial cells. Cancer Res. 60, 6723–6729.

    PubMed  CAS  Google Scholar 

  175. Larsson, H., Akerud, P., Nordling, K., Raub-Segall, E., Claesson-Welsh, L., and Bjork, I. (2001) A novel anti-angiogenic form of antithrombin with retained proteinase binding ability and heparin affinity. J. Biol. Chem. 276, 11996–12002.

    PubMed  CAS  Google Scholar 

  176. Gale, N. W. and Yancopoulos, G. D. (1999) Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev. 13, 1055–1066.

    PubMed  CAS  Google Scholar 

  177. Klint, P. and Claesson-Welsh, L. (1999) Signal transduction by fibroblast growth factor receptors. Frontiers Biosci. 4, D165–D177.

    CAS  Google Scholar 

  178. Davis, S., Aldrich, T. H., Jones, P. F., et al. (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87, 1153–1155.

    Google Scholar 

  179. Maisonpierre, P. C., Suri, C., Jones, P. F., et al. (1997) Angiopoietin-2, a natural antagonist for tie2 that disrupts in vivo angiogenesis. Science 277, 55–60.

    PubMed  CAS  Google Scholar 

  180. Suri, C., Jones, P. F., Patan, S., et al. (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1153–1155.

    Google Scholar 

  181. Baker, C. H., Solorzano, C. C., and Fidler, I. J. (2001) Angiogenesis and cancer metastasis: antiangiogenic therapy of human pancreatic adenocarcinoma. Int. J. Clin. Oncol. 6, 59–65.

    PubMed  CAS  Google Scholar 

  182. Yuan, F., Chen, Y., Dellian, M., Safabakhsh, N., Ferrara, N., and Jain, R. K. (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-VEGF/VPF antibody. Proc. Natl. Acad. Sci. USA 93, 14765–14770.

    PubMed  CAS  Google Scholar 

  183. Perrotte, P., Matsumoto, T., Inoue, K., et al. (1999) Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin. Cancer Res. 5, 257–265.

    PubMed  CAS  Google Scholar 

  184. Petit, A. M., Rak, J., Hung, M. C., et al. (1997) Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am. J. Pathol. 151, 1523–1530.

    PubMed  CAS  Google Scholar 

  185. Sirotnak, F. M., Zakowski, M. F., Miller, V. A., Scher, H. I., and Kris, M. G. (2000) Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coad-ministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clini. Cancer Res. 6, 4885–4892.

    CAS  Google Scholar 

  186. Drevs, J., Hofmann, I., Hugenschmidt, H., et al. (2000) Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Res. 60, 4819–4824.

    PubMed  CAS  Google Scholar 

  187. Wood, J. M., Bold, G., Buchdunger, E., et al. (2000) PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res. 60, 2178–2189.

    PubMed  CAS  Google Scholar 

  188. Kendall, R. L. and Thomas, K. A. (1993) Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl. Acad. Sci. USA 90, 10705–10709.

    PubMed  CAS  Google Scholar 

  189. Kendall, R. L., Wang, G., and Thomas, K. A. (1996) Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem. Biophys. Res. Commun. 226, 324–328.

    PubMed  CAS  Google Scholar 

  190. Kong, H. L., Hecht, D., Song, W., et al. (1998) Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular domain of the flt-1 vascular endothelial growth factor receptor. Hum. Gene Ther. 9, 823–833.

    PubMed  CAS  Google Scholar 

  191. Pavco, P. A., Bouhana, K. S., Gallegos, A. M., et al. (2000) Antitumor and antimetastatic activity of ribozymes targeting the messenger RNA of vascular endothelial growth factor receptors. Clin. Cancer Res. 6, 2094–2103.

    PubMed  CAS  Google Scholar 

  192. Parry, T. J., Cushman, C., Gallegos, A. M., et al. (1999) Bioactivity of anti-angiogenic ribozymes targeting Flt-1 and KDR mRNA. Nucleic Acids Res. 27, 2569–2577.

    PubMed  CAS  Google Scholar 

  193. Folkman, J. (1998) Antiangiogenic gene therapy. Proc. Natl. Acad. Sci. USA 95, 9064–9066.

    PubMed  CAS  Google Scholar 

  194. Feldman, A. L. and Libutti, S. K. (2000) Progress in antiangiogenic gene therapy of cancer [Review] [147 refs]. Cancer 89, 1181–1194.

    PubMed  CAS  Google Scholar 

  195. Kong, H. and Crystal, R. G. (1998) Gene therapy strategies for tumor angiogenesis. J. Natl. Cancer Inst. 90, 273–286.

    PubMed  CAS  Google Scholar 

  196. Isner, J. M., Pieczek, A., Schainfeld, R., et al. (1996) Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb [see comments]. Comment in: Lancet 1996 Nov 16; 348(9038), 1380–81, discussion 1381–1382. Comment in: Lancet 1996 Nov 16; 348(9038), 1381, discussion 1381–2. Lancet 348, 370–374.

    PubMed  CAS  Google Scholar 

  197. Isner, J. M., Vale, P. R., Symes, J. F., and Losordo, D. W. (2001) Assessment of risks associated with cardiovascular gene therapy in human subjects [Review] [94 refs]. Circ. Res. 89, 389–400.

    PubMed  CAS  Google Scholar 

  198. Isner, J. M. (2000) Angiogenesis: a “breakthrough” technology in cardiovascular medicine [Review] [26 refs]. J. Invasive Cardiol. 12(Suppl. A), 14A–17A.

    PubMed  Google Scholar 

  199. Sellke, F. W. and Simons, M. (1999) Angiogenesis in cardiovascular disease: current status and therapeutic potential [Review] [42 refs]. Drugs 58, 391–396.

    PubMed  CAS  Google Scholar 

  200. Rosengart, T. K., Lee, L. Y., Patel, S. R., et al. (1999) Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100, 468–474.

    PubMed  CAS  Google Scholar 

  201. Cao, Y., O’Reilly, M. S., Marshall, B., Flynn, E., Ji, R. W., and Folkman, J. (1998) Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. J. Clin. Invest. 101, 1055–1063.

    PubMed  CAS  Google Scholar 

  202. Weinstat-Saslow, D. L., Zabrenetzky, V. S., VanHoutte, K., Frazier, W. A., Roberts, D. D., and Steeg, P. S. (1994) Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential and angiogenesis. Cancer Res. 54, 6504–6511.

    PubMed  CAS  Google Scholar 

  203. Sheibani, N. and Frazier, W. A. (1995) Thrombospondin 1 expression in transformed endothelial cells restores a normal phenotype and suppresses their tumorigenesis. Proc. Natl. Acad. Sci. USA 92, 6788–6792.

    PubMed  CAS  Google Scholar 

  204. Bleuel, K., Popp, S., Fusenig, N. E., Stanbridge, E. J., and Boukamp, P. (1999) Tumor suppression in human skin carcinoma cells by chromosone 15 transfer or thrombospondin-1 overexpression through halted tumor vascularization. Proc. Natl. Acad. Sci. USA 96, 2065–2070.

    PubMed  CAS  Google Scholar 

  205. Tanaka, T., Cao, Y., Folkman, J., and Fine, H. A. (1998) Viral vector-targeted antiangiogenic gene therapy utilizing an angiostatin complementary DNA. Cancer Res. 58, 3362–3369.

    PubMed  CAS  Google Scholar 

  206. Griscelli, F., Li, H., Bennaceur-Griscelli, A., et al. (1998) Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc. Natl. Acad. Sci. USA 95, 6367–6372.

    PubMed  CAS  Google Scholar 

  207. Liu, Y., Thor, A., Shtivelman, E., et al. (1999) Systemic gene delivery expands the repertoire of effective antiangiogenic agents. J. Biol. Chem. 274, 13338–13344.

    PubMed  CAS  Google Scholar 

  208. Gorrin-Rivas, M. J., Arii, S., Furutani, M., et al. (2000) Mouse macrophage metalloelastase gene transfer into a murine melanoma suppresses primary tumor growth by halting angiogenesis. Clin. Cancer Res. 6, 1647–1654.

    PubMed  CAS  Google Scholar 

  209. Blezinger, P., Wang, J., Gondo, M., et al. (1999) Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene. Nat. Biotechnol. 17, 343–348.

    PubMed  CAS  Google Scholar 

  210. Feldman, A. L., Restifo, N. P., Alexander, H. R., et al. (2000) Antiangiogenic gene therapy of cancer utilizing a recombinant adenovirus to elevate systemic endostatin levels in mice. Cancer Res. 60, 1503–1506.

    PubMed  CAS  Google Scholar 

  211. Kong, H. L., Hecht, D., Song, W., et al. (1998) Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular domain of the flt-1 VEGF receptor. Hum. Gene Ther. 9, 823–833.

    PubMed  CAS  Google Scholar 

  212. Davidoff, A. M., Ng, C. Y., Brown, P., et al. (2001) Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin. Cancer Res. 7, 2870–2879.

    PubMed  CAS  Google Scholar 

  213. Lin, P., Buxton, J. A., Acheson, A., et al. (1998) Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc. Natl. Acad. Sci. USA 95, 8829–8834.

    PubMed  CAS  Google Scholar 

  214. Browder, T., Butterfield, C. E., Kraling, B. M., et al. (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 60, 1878–1886.

    PubMed  CAS  Google Scholar 

  215. Klement, G., Baruchel, S., Rak, J., et al. (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity [see comments]. Comment in: J. Clin. Invest. 2000 Apr; 105(8), 1045–7. J. Clin. Invest. 105, R15–R24.

    PubMed  CAS  Google Scholar 

  216. Soffer, S. Z., Moore, J. T., Kim, E., et al. (2001) Combination antiangiogenic therapy: increased efficacy in a murine model of Wilms tumor. J. Pediatr. Surg. 36, 1177–1181.

    PubMed  CAS  Google Scholar 

  217. Bello, L., Carrabba, G., Giussani, C., et al. (2001) Low-dose chemotherapy combined with an antiangiogenic drug reduces human glioma growth in vivo. Cancer Res. 61, 7501–7506.

    PubMed  CAS  Google Scholar 

  218. St Croix, B., Rago, C., Velculescu, V., et al. (2000) Genes expressed in human tumor endothelium [see comments]. Comment in: Science 2000 Aug 18; 289(5482), 1121–2. Science 289, 1197–1202.

    PubMed  CAS  Google Scholar 

  219. Brem, H., Goto, F., Budson, A., Saunders, L., and Folkman, J. (1994) Minimal drug resistance after prolonged antiangiogenic therapy with AGM-1470. Surg. Forum XLV, 674–677.

    Google Scholar 

  220. Hausman, M. R., Schaffler, M. B., and Majeska, R. J. (2001) Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 29, 560–564.

    PubMed  CAS  Google Scholar 

  221. Berger, A. C., Feldman, A. L., Gnant, M. F., et al. (2000) The angiogenesis inhibitor, endostatin, does not affect murine cutaneous wound healing. J. Surg. Res. 91, 26–31.

    PubMed  CAS  Google Scholar 

  222. Bloch, W., Huggel, K., Sasaki, T., et al. (2000) The angiogenesis inhibitor endostatin impairs blood vessel maturation during wound healing. FASEB J. 14, 2373–2376.

    PubMed  CAS  Google Scholar 

  223. Mundhenke, C., Thomas, J. P., Wilding, G., et al. (2001) Tissue examination to monitor antiangiogenic therapy a phase I clinical trial with endostatin. Clin. Cancer Res. 7, 3366–3374.

    PubMed  CAS  Google Scholar 

  224. Gerber, H. P., Hillan, K. J., Ryan, A. M., et al. (1999) VEGF is required for growth and survival in neonatal mice. Development-Supplement 126, 1149–1159.

    CAS  Google Scholar 

  225. Felbor, U., Dreier, L., Bryant, R. A., Ploegh, H. L., Olsen, B. R., and Mothes, W. (2000) Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 19, 1187–1194.

    PubMed  CAS  Google Scholar 

  226. Wen, W., Moses, M. A., Wiederschain, D., Arbiser, J. L., and Folkman, J. (1999) The generation of endostatin is mediated by elastase. Cancer Res. 59, 6052–6056.

    PubMed  CAS  Google Scholar 

  227. Drixler, T. A., Rinkes, I. H., Ritchie, E. D., van Vroonhoven, T. J., Gebbink, M. F., and Voest, E. E. (2000) Continuous administration of angiostatin inhibits accelerated growth of colorectal liver metastases after partial hepatectomy. Cancer Res. 60, 1761–1765.

    PubMed  CAS  Google Scholar 

  228. Kisker, O., Becker, C. M., Prox, D., et al. (2001) Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res. 61, 7669–7674.

    PubMed  CAS  Google Scholar 

  229. Lode, H. N., Moehler, T., Xiang, R., et al. (1999) Synergy between an antiangiogenic integrin alphav antagonist and an antibody-cytokine fusion protein eradicates spontaneous tumor metastases. Proc. Natl. Acad. Sci. USA 96, 1591–1596.

    PubMed  CAS  Google Scholar 

  230. Oyama, T., Ran, S., Ishida, T., et al. (1998) Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J. Immunol. 160, 1224–1232.

    PubMed  CAS  Google Scholar 

  231. Gabrilovich, D. I., Chen, H. L., Girgis, K. R., et al. (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells [erratum appears in Nat. Med. 1996 Nov; 2(11), 1267]. Nat. Med. 2, 1096–1103.

    PubMed  CAS  Google Scholar 

  232. Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E., and Carbone, D. P. (1999) Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res. 5, 2963–2970.

    PubMed  CAS  Google Scholar 

  233. Arenberg, D. A., Kunkel, S. L., Polverini, P. J., et al. (1996) Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J. Exp. Med. 184, 981–992.

    PubMed  CAS  Google Scholar 

  234. Cheng, W. F., Hung, C. F., Chai, C. Y., et al. (2001) Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J. Clin. Invest. 108, 669–678.

    PubMed  CAS  Google Scholar 

  235. Gyorffy, S., Palmer, K., Podor, T. J., Hitt, M., and Gauldie, J. (2001) Combined treatment of a murine breast cancer model with type 5 adenovirus vectors expressing murine angiostatin and IL-12: a role for combined anti-angiogenesis and immunotherapy. J. Immunol. 166, 6212–6217.

    PubMed  CAS  Google Scholar 

  236. Davidoff, A. M., Leary, M. A., Ng, C. Y., et al. (2001) Autocrine expression of both endostatin and green fluorescent protein provides a synergistic antitumor effect in a murine neuroblastoma model. Cancer Gene Ther. 8, 537–545.

    PubMed  CAS  Google Scholar 

  237. Teicher, B. A., Sotomayor, E. A., and Huang, Z. D. (1992) Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res. 52, 6702–6704.

    PubMed  CAS  Google Scholar 

  238. Teicher, B. A., Holden, S. A., Dupuis, N. P., et al. (1995) Potentiation of cytotoxic therapies by TNP-470 and minocycline in mice bearing EMT-6 mammary carcinoma. Breast Cancer Res. Treat. 36, 227–236.

    PubMed  CAS  Google Scholar 

  239. Lee, K., Erturk, E., Mayer, R., and Cockett, A. T. (1987) Efficacy of antitumor chemotherapy in C3H mice enhanced by the antiangiogenesis steroid, cortisone acetate. Cancer Res. 47, 5021–5024.

    PubMed  CAS  Google Scholar 

  240. Bertolini, F., Fusetti, L., Mancuso, P., et al. (2000) Endostatin, an antiangiogenic drug, induces tumor stabilization after chemotherapy or anti-CD20 therapy in a NOD/SCID mouse model of human high-grade non-Hodgkin lymphoma. Blood 96, 282–287.

    PubMed  CAS  Google Scholar 

  241. Ciardiello, F., Caputo, R., Bianco, R., et al. (2000) Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin. Cancer Res. 6, 2053–2063.

    PubMed  CAS  Google Scholar 

  242. Bruns, C. J., Harbison, M. T., Davis, D. W., et al. (2000) Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin. Cancer Res. 6, 1936–1948.

    PubMed  CAS  Google Scholar 

  243. Kawamoto, T., Sato, J. D., Le, A., Polikoff, J., Sato, G. H., and Mendelsohn, J. (1983) Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc. Natl. Acad. Sci. USA 80, 1337–1341.

    PubMed  CAS  Google Scholar 

  244. Mendelsohn, J. and Baselga, J. (2000) The EGF receptor family as targets for cancer therapy [Review] [155 refs]. Oncogene 19, 6550–6565.

    PubMed  CAS  Google Scholar 

  245. Strawn, L. M., Kabbinavar, F., Schwartz, D. P., et al. (2000) Effects of SU101 in combination with cytotoxic agents on the growth of subcutaneous tumor xenografts. Clin. Cancer Res. 6, 2931–2940.

    PubMed  CAS  Google Scholar 

  246. Hansen-Algenstaedt, N., Stoll, B. R., Padera, T. P., et al. (2000) Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockade, hormone ablation, and chemotherapy. Cancer Res. 60, 4556–4560.

    PubMed  CAS  Google Scholar 

  247. Margolin, K., Gordon, M. S., Holmgren, E., et al. (2001) Phase Ib trial of intravenous recombinant humanized monoclonal antibody to vascular endothelial growth factor in combination with chemotherapy in patients with advanced cancer: pharmacologic and long-term safety data. J. Clin. Oncol. 19, 851–856.

    PubMed  CAS  Google Scholar 

  248. Canney, P. and Dean, S. (1990) Transforming growth factor beta: a promoter of late connective tissue injury following radiotherapy? Br. J. Radiol. 63, 620–623.

    PubMed  CAS  Google Scholar 

  249. Gorski, D. H., Beckett, M. A., Jaskowiak, N. T., et al. (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res. 59, 3374–3378.

    PubMed  CAS  Google Scholar 

  250. Hartford, A. C., Gohongi, T., Fukumura, D., and Jain, R. K. (2000) Irradiation of a primary tumor, unlike surgical removal, enhances angiogenesis suppression at a distal site: potential role of host-tumor interaction. Cancer Res. 60, 2128–2131.

    PubMed  CAS  Google Scholar 

  251. Teicher, B. A., Dupuis, N., Kusomoto, T., et al. (1995) Antiangiogenic agents can increase tumor oxygenation and response to radiation therapy. Rad. Oncol. Invest. 2, 269–276.

    Google Scholar 

  252. Ikeda, S., Akagi, K., Shiraishi, T., and Tanaka, Y. (1998) Enhancement of the effect of an angiogenesis inhibitor on murine tumors by hyperthermia. Oncol. Rep. 5, 181–184.

    PubMed  CAS  Google Scholar 

  253. Masunaga, S., Ono, K., Nishimura, Y., et al. (2000) Combined effects of tirapazamine and mild hyperthermia on anti-angiogenic agent (TNP-470) treated tumors-reference to the effect on intratumor quiescent cells [see comments]. Comment in: Int. J. Radiat. Oncol. Biol. Phys. 2000 Jun 1; 47(3), 549–0. Int. J. Radiat. Oncol. Biol. Phys. 47, 799–807.

    PubMed  CAS  Google Scholar 

  254. Nishimura, Y., Murata, R., and Hiraoka, M. (1996) Combined effects of angiogenesis inhibitor (TNP-470) and hyperthermia. Br. J. Cancer 73, 270–274.

    PubMed  CAS  Google Scholar 

  255. Murata, R., Nishimura, Y., and Hiraoka, M. (1997) An antiangiogenic agent (TNP-470) inhibited reoxygenation during fractionated radiotherapy of murine mammary carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 37, 1107–1113.

    PubMed  CAS  Google Scholar 

  256. Lund, E. L., Bastholm, L., and Kristjansen, P. E. (2000) Therapeutic synergy of TNP-470 and ionizing radiation: effects on tumor growth, vessel morphology, and angiogenesis in human glioblastoma multiforme xenografts. Clin. Cancer Res. 6, 971–978.

    PubMed  CAS  Google Scholar 

  257. Mauceri, H. J., Hanna, N. N., Beckett, M. A., et al. (1998) Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature 394, 287–291.

    PubMed  CAS  Google Scholar 

  258. Milas, L., Kishi, K., Hunter, N., Mason, K., Masferrer, J. L., and Tofilon, P. J. (1999) Enhancement of tumor response to gamma-radiation by an inhibitor of cyclooxygenase-2 enzyme [see comments]. Comment in: J. Natl. Cancer Inst. 2000 Feb 16; 92(4), 346–7. J. Nat. Cancer Inst. 91, 1501–1504.

    PubMed  CAS  Google Scholar 

  259. Milas, L., Mason, K., Hunter, N., et al. (2000) In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody [see comments], Clin. Cancer Res. 6, 701–708.

    PubMed  CAS  Google Scholar 

  260. Huang, S. M. and Harari, P. M. (2000) Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin. Cancer Res. 6, 2166–2174.

    PubMed  CAS  Google Scholar 

  261. Lee, C. G., Heijn, M., di Tomaso, E., et al. (2000) Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res. 60, 5565–5570.

    PubMed  CAS  Google Scholar 

  262. Geng, L., Donnelly, E., McMahon, G., et al. (2001) Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res. 61, 2413–2419.

    PubMed  CAS  Google Scholar 

  263. Kozin, S., Boucher, Y., Hicklin, D. J., Bohlen, P., Jain, R. K., and Suit, H. D. (2001) Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res. 61, 39–44.

    PubMed  CAS  Google Scholar 

  264. Gorski, D. H., Mauceri, H. J., Salloum, R. M., et al. (1998) Potentiation of the antitumor effect of ionizing radiation by brief concomitant exposures to angiostatin. Cancer Res. 58, 5686–5689.

    PubMed  CAS  Google Scholar 

  265. Salven, P., Orpana, A., Teerenhovi, L., and Joensuu, H. (2000) Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF and bFGF is an independent predictor of poor prognosis in non-Hodgkin lymphoma: a single-institution study of 200 patients. Blood 96, 3712–3718.

    PubMed  CAS  Google Scholar 

  266. Fontanini, G., Boldrini, L., Chine, S., et al. (1999) Expression of vascular endothelial growth factor mRNA in non-small-cell lung carcinomas. Br. J. Cancer 79, 363–369.

    PubMed  CAS  Google Scholar 

  267. Watanabe, H., Nguyen, M., Schizer, M., Li, V., Hayes, D. F., and Sallan, D. F. (1992) Basic fibroblast growth factor in human serum-a prognostic test for breast cancer. Mol. Biol. Cell 3, 234a.

    Google Scholar 

  268. Poon, R. T., Fan, S. T., and Wong, J. (2001) Clinical implications of circulating angiogenic factors in cancer patients [Review] [196 refs]. J. Clin. Oncol. 19, 1207–1225.

    PubMed  CAS  Google Scholar 

  269. Weidner, N., Semple, J. P., Welch, W. R., and Folkman, J. (1991) Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8.

    PubMed  CAS  Google Scholar 

  270. Gasparini, G. (2001) Clinical significance of determination of surrogate markers of angiogenesis in breast cancer [Review] [184 refs]. Crit. Rev. Oncol. Hematol. 37, 97–114.

    PubMed  CAS  Google Scholar 

  271. Fox, S. B. and Harris, A. L. (1997) Markers of tumor angiogenesis: clinical applications in prognosis and anti-angiogenic therapy [Review] [174 refs]. Invest. New Drugs 15, 15–28.

    PubMed  CAS  Google Scholar 

  272. Lissoni, P., Fugamalli, E., Malugani, F., et al. (2000) Chemotherapy and angiogenesis in advanced cancer: vascular endothelial growth factor (VEGF) decline as predictor of disease control during taxol therapy in metastatic breast cancer. Int. J. Biol. Markers 15, 308–311.

    PubMed  CAS  Google Scholar 

  273. Kido, Y. (2001) Vascular endothelial growth factor (VEGF) serum concentration changes during chemotherapy in patients with lung cancer. Kurume Med. J. 48, 43–47.

    PubMed  CAS  Google Scholar 

  274. Boehle, A. S., Kurdow, R., Schulze, M., et al. (2001) Human endostatin inhibits growth of human non-small-cell lung cancer in a murine xenotransplant model. Int. J. Cancer 94, 420–428.

    PubMed  CAS  Google Scholar 

  275. Yano, S., Shinohara, H., Herbst, R. S., et al. (2000) Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res. 60, 4959–4967.

    PubMed  CAS  Google Scholar 

  276. Bruns, C. J., Solorzano, C. C., Harbison, M. T., et al. (2000) Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res. 60, 2926–2935.

    PubMed  CAS  Google Scholar 

  277. Herbst, R. S., Yano, S., Kuniyasu, H., et al. (2000) Differential expression of E-cadherin and type IV collagenase genes predicts outcome in patients with stage I non-small cell lung carcinoma. Clin. Cancer Res. 6, 790–797.

    PubMed  CAS  Google Scholar 

  278. Kuniyasu, H., Troncosco, P., Johnston, D., et al. (2000) Relative expression of type IV collagenase, E-cadherin, and vascular endothelial growth factor/vascular permeability factor in prostatectomy specimens distinguishes organ-confined from pathologically advanced prostate cancers. Clin. Cancer Res. 6, 2295–2308.

    PubMed  CAS  Google Scholar 

  279. Kuniyasu, H., Ellis, L. M., Evans, D. B., et al. (1999) Relative expression of E-cadherin and type IV collagenase genes predicts disease outcome in patients with resectable pancreatic carcinoma. Clin. Cancer Res. 5, 25–33.

    PubMed  CAS  Google Scholar 

  280. Carmeliet, P. and Jain, R. K. (2000) Angiogenesis in cancer and other diseases [Review] [75 refs]. Nature 407, 249–257.

    PubMed  CAS  Google Scholar 

  281. Boucher, Y., Leunig, M., and Jain, R. K. (1996) Tumor angiogenesis and interstitial hypertension. Cancer Res. 56, 4264–4266.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

O’Reilly, M.S. (2003). Therapeutic Strategies Using Inhibitors of Angiogenesis. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 223. Humana Press. https://doi.org/10.1385/1-59259-329-1:599

Download citation

  • DOI: https://doi.org/10.1385/1-59259-329-1:599

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-987-2

  • Online ISBN: 978-1-59259-329-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics