Skip to main content

Photolithographic Synthesis of High-Density Oligonucleotide Arrays

  • Protocol
DNA Arrays

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 170))

Abstract

High-density polynucleotide probe arrays provide a massively parallel approach to genetic sequence analysis that is having a major impact on biomedical research and clinical diagnostics (1). These arrays are comprised of large sets of nucleic acid probe sequences immobilized in defined, addressable locations on the surface of a substrate, and are capable of acquiring unprecedented amounts of genetic information from biological samples in a single hybridization procedure. The advent of this technology has relied on developing methods of fabricating arrays with sufficiently high information content and density. Light-directed synthesis (25) has enabled the large-scale manufacture of arrays containing hundreds of thousands of oligonucleotide probe sequences on a glass “chip” about 1.6 cm2. This method is used to produce high-density GeneChip® probe arrays, which are now finding widespread use in the detection and analysis of mutations and polymorphisms (“genotyping”), and in a wide range of gene expression studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. (1999) The chipping forecast. Nat. Genet. 21(1Suppl.), 1–60.

    Google Scholar 

  2. Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L. T., Lu, A., and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773.

    Article  PubMed  CAS  Google Scholar 

  3. Pease, A. C., Solas, D., Sullivan, E. J., Cronin, M. T., Holmes, C. P., and Fodor, S. P. A. (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 91, 5022–5026.

    Article  PubMed  CAS  Google Scholar 

  4. McGall, G. H., Barone, D., Diggelmann, M., Fodor, S. P. A., Gentalen, E., and Ngo, N. (1997) The efficiency of light-directed synthesis of DNA arrays on glass substrates. J. Am. Chem. Soc. 119, 5081–5090.

    Article  CAS  Google Scholar 

  5. Lipshutz, R., Fodor, S. P. A., Gingeras, T. R., and Lockhart, D. J. (1999) High-density synthetic oligonucleotide arrays. Nat. Genet. 21(1Suppl.), 20–24.

    Article  PubMed  CAS  Google Scholar 

  6. Pirrung, M. C. and Bradley, J.-C. (1995) Dimethoxy benzoin carbonates: photo-chemically-removable alcohol protecting groups suitable for phosphoramidite-based DNA synthesis. J. Org. Chem. 60, 1116–1117.

    Article  CAS  Google Scholar 

  7. Pirrung, M. C. and Bradley, J.-C. (1995) Comparison of methods for photochemical phosphoramidite-based DNA synthesis. J. Org. Chem. 60, 6270–6276.

    Article  CAS  Google Scholar 

  8. Pirrung, M. C., Fallon, L., and McGall, G. H. (1998) Proofing of photolithographic DNA synthesis with 3′,5′-dimethoxybenzoinyloxy-carbonyl-protected deoxy-nucleoside phosphoramidites. J. Org. Chem. 63, 241–246.

    Article  CAS  Google Scholar 

  9. McGall, G. H. (1997) The fabrication of high density oligonucleotide arrays for hybridization-based sequence analysis, in Biochip Arrays and Integrated Devices for Clinical Diagnostics (Hori, W., ed.), IBC Library Series, Southboro, MA, pp. 2.1–2.33.

    Google Scholar 

  10. Hasan, A., Stengele, K.-P., Giegrich, H., Cornwell, P., Isham, K.R., Sachleben, R., Pfleiderer, W., and Foote, R. S. (1997) Photolabile protecting groups for nucleosides: synthesis and photodeprotection rates. Tetrahedron 53, 4247–4262.

    Article  CAS  Google Scholar 

  11. Giegrich, H., Eisele-Buhler, S., Herman, C., Kvasyuk, E., Charubala, R., and Pfleiderer, W. (1998) New photolabile protecting groups in nucleoside and nucleotide chemistry—synthesis, cleavage mechanisms and applications. Nucleosides Nucleotides 17, 1987–1996.

    Article  CAS  Google Scholar 

  12. McGall, G. H., Labadie, J., Brock, P., Wallraff, G., Nguyen, T., and Hinsberg, W. (1996) Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists. Proc. Natl. Acad. Sci. USA 93, 13,555–13,560.

    Article  PubMed  CAS  Google Scholar 

  13. Wallraff, G., Labadie, J., Brock, P., DiPietro, R., Nguyen, T., Huynh, T., Hinsberg, W., and McGall, G. (1997) DNA chips. Chemtech 27, 22–32.

    CAS  Google Scholar 

  14. Beecher, J. E., McGall, G. H., and Goldberg, M. J. (1997) Chemically amplified photolithography for the fabrication of high density oligonucleotide arrays. Am. Chem. Soc. Div. Polym. Mater. Sci. Eng. 76, 597–598.

    CAS  Google Scholar 

  15. van Boom, J. H. and Wreesmann, C. J. T. (1984) Chemical synthesis of small oligoribonucleotides in solution, in Oligonucleotide Synthesis: A Practical Approach, (Gait, M. J., ed.), Oxford University Press, New York, NY, pp. 153–183.

    Google Scholar 

  16. Pirrung, M. C., Shuey, S. W., Lever, D. C., and Fallon, L. (1994) A convenient procedure for the deprotection of silylated nucleosides and nucleotides using triethylamine trihydrofluoride. Bioorgan. Med. Chem. Lett. 4, 1345–1346.

    Article  CAS  Google Scholar 

  17. Barone, A. D., Tang, A.-Y., and Caruthers, M. H. (1984) In situ Activation of bis-dialkylaminophosphines—a new method for synthesizing deoxyoligonucleotides on polymer supports. Nucleic Acids Res. 12, 4051–4061.

    Article  PubMed  CAS  Google Scholar 

  18. Broude, N. E., Sano, T., Smith, C. L., and Cantor, C. R. (1994) Enhanced DNA sequencing by hybridization. Proc. Natl. Acad. Sci. USA 91, 3072–3076.

    Article  PubMed  CAS  Google Scholar 

  19. Chee, M. S., Huang, X., Yang, R., Hubbell, E., Berno, A., Stern, D., Winkler, J., Lockhart, D. J., Morris, M. S., and Fodor, S. P. A. (1996) Accessing genetic information with high-density DNA arrays. Science 274, 610–614.

    Article  PubMed  CAS  Google Scholar 

  20. Lockhart, D. J., Dong, H., Byrne, M. C., Follettie, M. T., Gallo, M. V., Chee, M. S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H., and Brown, E. L. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675–1680.

    Article  PubMed  CAS  Google Scholar 

  21. Maskos, U. and Southern, E. M. (1993) A study of oligonucleotide reassociation using large arrays of oligonucleotides synthesized on a glass support. Nucleic Acids Res. 21, 4663–4669.

    Article  PubMed  CAS  Google Scholar 

  22. Gaffney, B. L., Marky, L. A., and Jones, R. A. (1984) The influence of purine 2-amino group on DNA conformation and stability-II. Tetrahedron 40, 3–13.

    Article  CAS  Google Scholar 

  23. Chollet, A., Chollet-Damerius, A., and Kawashima, E. H. (1985) Synthesis of oligonucleotides containing the base 2-aminoadenine. Chem. Scripta 26, 37–40.

    Google Scholar 

  24. Cheong, C., Tinoco, J., Jr., and Chollet, A. (1988) Quantitative measurements on the duples stability of 2,6-diaminopurine and 5-chlorouracil nucleotides using enzymatically synthesized oligomers. Nucleic Acids Res. 16, 5115–5122.

    Article  PubMed  CAS  Google Scholar 

  25. Hoheisel, J. D. and Lehrach, H. (1990) Quantitative measurements on the duplex stability of 2,6-diaminopurine and 5-chlorouracil nucleotides using enzymatically synthesized oligomers. FEBS Lett. 274, 103–106.

    Article  PubMed  CAS  Google Scholar 

  26. Chollet, A., Chollet-Damerius, A., and Kawashima, E. H. (1994) Synthesis of oligonucleotides containing the base 2-aminoadenine. Chem. Scripta 26, 37–40.

    Google Scholar 

  27. Prosnyak, M. I., Veselovskaya, S. I., Myasnikov, V. A., Efremova, E. J., Potapov, V. K., Limborska, S. A., and Sverdlov, E. D. (1994) Substitution of 2-aminoadenine and 5-methylcytosine for adenine and cytosine in hybridization probes increases the sensitivity of DNA fingerprinting. Genomics 21, 490–494.

    Article  PubMed  CAS  Google Scholar 

  28. Howard, F. B. and Miles, H. T. (1984) 2-NH2A:T helicies in the ribo-and deoxypolynucleotide series. Structural and energetic consequences of NH2A substitution. Biochemistry 23, 6723–6732.

    Article  PubMed  CAS  Google Scholar 

  29. Gryaznov, S. and Schultz, R. G. (1994) Stabilization of DNA:DNA and DNA:RNA duplexes by substitution of 2′-deoxyadenosine with 2′-deoxy-2-aminoadenosine. Tetrahedron Lett. 35, 2489–2492.

    Article  CAS  Google Scholar 

  30. Inoue, H., Hayase, Y., Imura, A., Iwai, S., Miura, K., and Ohtsuka, E. (1987) Synthesis and hybridization studies on two complementary nona(2′-O-methyl)ribonucleotides. Nucleic Acids Res. 15, 6131–6148.

    Article  PubMed  CAS  Google Scholar 

  31. Majlessi, M., Nelson, N. C., and Becker, M. M. (1998) Advantages of 2′-O-methyl oligoribonucleotide probes for detecting RNA targets. Nucleic Acids Res. 26, 2224–2229.

    Article  PubMed  CAS  Google Scholar 

  32. Fidanza, J. A. and McGall, G. H. (1999) High-density nucleoside analog probe arrays for enhanced hybridization. Nucleosides Nucleotides 18, 1293–1295.

    Article  PubMed  CAS  Google Scholar 

  33. Gunderson, K. L., Huang, X. C., Morris, M. S., Lipshutz, R. J., Lockhart, D. J., and Chee, M. S. (1998) Mutation detection by ligation to complete N-mer DNA arrays. Genome Res. 8, 1142–1153.

    PubMed  CAS  Google Scholar 

  34. Kozal, M. J., Shah, N., Shen, N., Yang, R., Fucini, R., Merigan, T., Richman, D., Morris, D., Hubbell, E., Chee, M. S., and Gingeras, T. G. (1996) Extensive polymorphisms observed in HIB-1 clade B protease gene using high-density oligonucleotide arrays. Nat. Med. 7, 753–759.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

McGall, G.H., Fidanza, J.A. (2001). Photolithographic Synthesis of High-Density Oligonucleotide Arrays. In: Rampal, J.B. (eds) DNA Arrays. Methods in Molecular Biology™, vol 170. Humana Press. https://doi.org/10.1385/1-59259-234-1:71

Download citation

  • DOI: https://doi.org/10.1385/1-59259-234-1:71

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-822-6

  • Online ISBN: 978-1-59259-234-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics