Skip to main content

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 70))

Abstract

The idea that cystic fibrosis (CF) results from dysregulation of ion channels, including the epithelial Na+channel (ENaC), evolved from observations made before the cloning of the CF gene in 1989. Multiple laboratories had reported that protein kinase A (PKA) stimulated a Cl∼ channel called the ORCC (outward rectifying Cl- channel) in cells from normal, but not CF, epithelial tissues (1-3). We had also reported that amiloride-sensitive Na+absorption was elevated in the airway epithelia of CF patients (4-6). Once cloned, sequences within the CF gene identified it as a member of the ATP-binding cassette (ABC) transporter superfamily (7). Surprisingly, the CF gene product was found to form a Cl- channel with distinctly different properties from the ORCC (8,9). Because ABC proteins were known to function as both transporters and regulators of other processes (10), and because the regulation of ORCC and amiloride-sensitive Na+absorption were affected in CF, the CF gene product was named the cystic fibrosis transmembrane conductance regulator (CFTR) (11). Subsequently, CFTR has been reported to affect the activity of a large number of other ion channels and solute transporters (12). The chief interest in CFTR’ s ability to affect the function of other ion channels and transporters is the possibility that such secondary functions contribute in an organ-specific fashion to the pathogenesis of CF. The organ-specific ion transport abnormalities observed in CF are highly variable, ranging from decreased salt and water secretion in pancreatic (13) and bile ducts (14) to decreased salt absorption by sweat ductal epithelium (15). In order to understand how a CFTR function other than Cl- conductance contributes to pathophysiology at an affected site, it is helpful to identify the molecular basis of the putative secondary function and define its role in normal physiology. Despite serious efforts, this level of understanding has not yet been achieved for CFTR’s apparent functional interactions with other ion channels and transporters, including ENaC. Lung disease is the primary cause of disability and death in CF patients, yet the nature of the relationship between CFTR function(s) and the maintenance of lung health remains controversial. In normal individuals, the removal of inhaled pathogens from the airway surface by mucociliary clearance (MCC) forms a major line of lung defense (16,17). In addition, the antimicrobial properties of airway surface liquid (ASL) contribute to the maintenance of a sterile airway environment (18,19). In CF patients, innate lung defense mechanisms become overwhelmed, and chronic infection and inflammation lead to the destruction of conducting airways. The precise defect in innate defense that results from CFTR mutations is a matter of intense investigation and debate. One school of thought holds that CFTR Cl- channel activity determines the salt composition of airway surface liquid (20). This theory proposes that normal airway epithelia utilize CFTR as the exclusive path for Cl- absorption to extract salt from the ASL, leaving a hypotonic luminal solution, much like a sweat duct. As a consequence, this model projects that CF airway surface liquid is relatively hypertonic. It was further hypothesized that a higher salt concentration in CF ASL interferes with the antimicrobial action of natural defensin molecules, leading to a breech in airway defense. Although this is an attractive model for the pathogenesis of CF lung disease, recent reports on the ionic composition of ASL in normal and CF using noninvasive ion-selective electrodes and fluorescent dyes have concluded that both normal and CF ASL are nearly isotonic and not different (21,22). This conclusion is compatible with independent assessments of the high water permeability of normal and CF airway epithelia, which suggest that neither epithelium can maintain a hypotonic ASL fluid (23-25). An alternative hypothesis relating CFTR mutations to the development of lung disease proposes that regulation of ENaC by CFTR is required to maintain an ASL height that is adequate for MCC to proceed. MCC is a complex process, involving coordinated functions of ciliary beating, salt and water transport, and mucus secretion. Central to the MCC process is the maintenance of a low-viscosity peri ciliary liquid layer on the airway surface that enables cilia to beat effectively and propel mucus out of the lung (26,27). The depth of this periciliary liquid layer is determined by net salt and water movements across airways epithelia, and thus is strongly influenced by ion channel activity (21,25). The ion channels in the apical membrane of airway epithelia that are rate limiting for net salt movement are CFTR and ENaC (28,29). The abnormal CFTR and ENaC activities observed in CF may, therefore, account for a reduced MCC rate and the subsequent onset of airway infection. Support for this theory includes the repeated observation that Na+absorption in CF airways is two- to threefold greater than in normal airways in vivo (30,31), in freshly excised tissues (5), and in various cultured airway epithelial preparations (32-34). Recent studies utilizing highly differentiated airway epithelial cultures that develop rotational mucus transport further demonstrated that the hyperabsorption of Na+by CF airway epithelia diminished the periciliary liquid layer and caused mucostasis (25). Therefore, the drastic consequences of CF lung disease appear to originate from the abnormal pattern of ion transport that results from mutations in the CF gene. Moreover, available data strongly suggest that negative modulation of ENaC by CFTR in human airways is a normal function of CFTR and relevant to CF lung disease pathogenesis. It is important to establish the molecular basis of this relationship between CFTR and ENaC, and methods that may help in this effort are the subject of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hwang, T. C., Lu, L., Zeitlin, P. L., Gruenert, D. C., Huganir, R., and Guggino, W. B. (1989) Cl-channels in CF: lack of activation by protein kinase C and cAMPdependent protein kinase. Science 244, 1351–1353.

    Article  CAS  PubMed  Google Scholar 

  2. Jetten, A. M., Yankaskas, J. R., Stutts, M. J., Willumsen, N. J., and Boucher, R. C. (1989) Persistence of abnormal chloride conductance regulation in transformed cystic fibrosis epithelia. Science 244, 1472–1475.

    Article  CAS  PubMed  Google Scholar 

  3. Welsh, M. J., Li, M., and McCann, J. D. (1989) Activation of normal and cystic fibrosis Cl-channels by voltage, temperature, and trypsin. J. Clin. Invest. 84, 2002–2007

    Article  CAS  PubMed  Google Scholar 

  4. Knowles, M., Gatzy, J., and Boucher, R. (1983) Relative ion permeability of normal and cystic fibrosis nasal epithelium. J. Clin. Invest. 71, 1410–1417

    Article  CAS  PubMed  Google Scholar 

  5. Boucher, R. C., Stutts, M. J., Knowles, M. R., Cantley, L., and Gatzy, J. T. (1986) Na+transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J. Clin. Invest. 78, 1245–1252.

    Article  CAS  PubMed  Google Scholar 

  6. Cotton, C. U., Stutts, M. J., Knowles, M. R., Gatzy, J. T., and Boucher, R. C. (1987) Abnormal apical cell membrane in cystic fibrosis respiratory epithelium. An in vitro electrophysiologic analysis. J. Clin. Invest. 79, 80–85.

    Article  CAS  PubMed  Google Scholar 

  7. Rommens, J. M., Dho, S., Bear, C. E., Kartner, N., Kennedy, D., Riordan, J. R., Tsui, L. C., and Foskett, J. K. (1991) cAMP-inducible chloride conductance in mouse fibroblast lines stably expressing the human cystic fibrosis transmembrane conductance regulator. Proc. Natl. Acad. Sci. USA 88, 7500–7504.

    Article  CAS  PubMed  Google Scholar 

  8. Gabriel, S. E., Clarke, L. L., Boucher, R. C., and Stutts, M. J. (1993) CFTR and outward rectifying chloride channels are distinct proteins with a regulatory relationship. Nature 363, 263–268.

    Article  CAS  PubMed  Google Scholar 

  9. Egan, M., Flotte, T., Afione, S., Solow, R., Zeitlin, P. L., Carter, B. J., and Guggino, W. B. (1992) Defective regulation of outwardly rectifying Cl-channels by protein kinase A corrected by insertion of CFTR. Nature 358, 581–584.

    Article  CAS  PubMed  Google Scholar 

  10. Mimmack, M. L., Gallagher, M. P., Pearce, S. R., Hyde, S. C., Booth, I. R., and Higgins, C. F. (1989) Energy coupling to periplasmic binding protein-dependent transport systems: stoichiometry of ATP hydrolysis during transport in vivo. Proc. Natl. Acad. Sci. USA 86, 8257–8261.

    Article  CAS  PubMed  Google Scholar 

  11. Rommens, J. M., Iannuzzi, M. C., Kerem, B., Drumm, M. L., Melmer, G., Dean, M., Rozmahel, R., Cole, J. L., Kennedy, D., Hidaka, N., and et al. (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245, 1059–1065.

    Article  CAS  PubMed  Google Scholar 

  12. Greger, R., Mall, M., Bleich, M., Ecke, D., Warth, R., Riedemann, N., and Kunzelmann, K. (1996) Regulation of epithelial ion channels by the cystic fibrosis transmembrane conductance regulator. J. Mol. Med. 74, 527–534.

    Article  CAS  PubMed  Google Scholar 

  13. Nousia-Arvanitakis, S. (1999) Cystic fibrosis and the pancreas: recent scientific advances. J. Clin. G astro enter ol. 29, 138–142.

    CAS  Google Scholar 

  14. Colombo, C., Battezzati, P. M., Strazzabosco, M., and Podda, M. (1998) Liver and biliary problems in cystic fibrosis. Semin. Liver Dis. 18, 227–235.

    Article  CAS  PubMed  Google Scholar 

  15. Quinton, P. M. and Reddy, M. M. (1991) Regulation of absorption in the human sweat duct. Adv. Exp. Med. Biol. 290, 159–170.

    CAS  PubMed  Google Scholar 

  16. Rennard, S. I. and Romberger, D. J. (2000) Host defenses and pathogenesis. Semin. Respir. Infect. 15, 7–13

    Article  CAS  PubMed  Google Scholar 

  17. Wanner, A., Salathe, M., and O’Riordan, T. G. (1996) Mucociliary clearance in the airways. Am. J. Respir. Crit. Care Med. 154, 1868–1902.

    CAS  PubMed  Google Scholar 

  18. Wilmott, R. W., Khurana-Hershey, G., and Stark, J. M. (2000) Current concepts on pulmonary host defense mechanisms in children. Curr. Opin. Pediatr. 12, 187–193.

    Article  CAS  PubMed  Google Scholar 

  19. DeLong, P. A. and Kotloff, R. M. (2000) An overview of pulmonary host defense. Semin. Roentgenol. 35, 118–123

    Article  CAS  PubMed  Google Scholar 

  20. Singh, P. K., Tack, B. F., McCray, P. B., Jr., and Welsh, M. J. (2000) Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am. J. Physiol. Lung Cell Mol. Physiol. 279, L799–805

    CAS  PubMed  Google Scholar 

  21. Matsui, H., Grubb, B. R., Tarran, R., Randell, S. H., Gatzy, J. T., Davis, C. W., and Boucher, R. C. (1998) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95, 1005–1015.

    Article  CAS  PubMed  Google Scholar 

  22. Jayaraman, S., Song, Y., Vetrivel, L., Shankar, L., and Verkman, A. S. (2001) Noninvasive in vivo fluorescence measurement of airway-surface liquid depth, salt concentration, and pH. J. Clin. Invest. 107, 317–324.

    Article  CAS  PubMed  Google Scholar 

  23. Verkman, A. S., Matthay, M. A., and Song, Y. (2000) Aquaporin water channels and lung physiology. Am. J. Physiol. Lung Cell Mol. Physiol. 278, L867–879.

    CAS  PubMed  Google Scholar 

  24. Pedersen, P. S., Holstein-Rathlou, N. H., Larsen, P. L., Qvortrup, K., and Frederiksen, O. (1999) Fluid absorption related to ion transport in human airway epithelial spheroids. Am. J. Physiol. 277, L1096–1103.

    CAS  PubMed  Google Scholar 

  25. Matsui, H., Davis, C. W., Tarran, R., and Boucher, R. C. (2000) Osmotic water permeabilities of cultured, well-differentiated normal and cystic fibrosis airway epithelia. J. Clin. Invest. 105, 1419–1427.

    Article  CAS  PubMed  Google Scholar 

  26. Houtmeyers, E., Gosselink, R., Gayan-Ramirez, G., and Decramer, M. (1999) Regulation of mucociliary clearance in health and disease. Eur. Respir. J. 13, 1177–1188

    Article  CAS  PubMed  Google Scholar 

  27. Gueron, S. and Levit-Gurevich, K. (1998) Computation of the internal forces in cilia: application to ciliary motion, the effects of viscosity, and cilia interactions. Biophys. J. 74, 1658–1676.

    Article  CAS  PubMed  Google Scholar 

  28. Boucher, R. C. (1994) Human airway ion transport. Part one. Am. J. Respir. Crit. CareMed. 150, 271–281.

    CAS  Google Scholar 

  29. Boucher, R. C. (1994) Human airway ion transport. Part two. Am. J. Respir. Crit. CareMed. 150, 581–593.

    CAS  Google Scholar 

  30. Knowles, M., Gatzy, J., and Boucher, R. (1981) Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N. Engl. J. Med. 305, 1489–1495.

    Article  CAS  PubMed  Google Scholar 

  31. Knowles, M. R., Stutts, M. J., Spock, A., Fischer, N., Gatzy, J. T., and Boucher, R. C. (1983) Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 221, 1067–1070.

    Article  CAS  PubMed  Google Scholar 

  32. Willumsen, N. J. and Boucher, R. C. (1989) Shunt resistance and ion permeabilities in normal and cystic fibrosis airway epithelia. Am. J. Physiol. 256, C1054–1063.

    CAS  PubMed  Google Scholar 

  33. Willumsen, N. J., Davis, C. W., and Boucher, R. C. (1989) Cellular Cl-transport in cultured cystic fibrosis airway epithelium. Am. J. Physiol. 256, C1045–1053.

    CAS  PubMed  Google Scholar 

  34. Clarke, L. L. and Boucher, R. C. (1992) Chloride secretory response to extracellular ATP in human normal and cystic fibrosis nasal epithelia. Am. J. Physiol. 263, C348–356.

    CAS  PubMed  Google Scholar 

  35. Alton, E. W., Rogers, D. F., Logan-Sinclair, R., Yacoub, M., Barnes, P. J., and Geddes, D. M. (1992) Bioelectric properties of cystic fibrosis airways obtained at heart-lung transplantation. Thorax 47, 1010–1014.

    Article  CAS  PubMed  Google Scholar 

  36. Mertz, J. E. and Gurdon, J. B. (1977) Purified DNAs are transcribed after microinjection into Xenopus oocytes. Proc. Natl. Acad. Sci. USA 74, 1502–1506.

    Article  CAS  PubMed  Google Scholar 

  37. Bear, C. E., Duguay, F., Naismith, A. L., Kartner, N., Hanrahan, J. W., and Riordan, J. R. (1991) Cl-channel activity in Xenopus oocytes expressing the cystic fibrosis gene. J. Biol. Chem. 266, 19,142–19,145.

    CAS  PubMed  Google Scholar 

  38. Fulmer, S. B., Schwiebert, E. M., Morales, M. M., Guggino, W. B., and Cutting, G. R. (1995) Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents. Proc. Natl. Acad. Sci. USA 92, 6832–6836

    Article  CAS  PubMed  Google Scholar 

  39. Smit, L. S., Wilkinson, D. J., Mansoura, M. K., Collins, F. S., and Dawson, D. C. (1993) Functional roles of the nucleotide-binding folds in the activation of the cystic fibrosis transmembrane conductance regulator. Proc. Natl. Acad. Sci. USA 90, 9963–9967

    Article  CAS  PubMed  Google Scholar 

  40. Drumm, M. L., Wilkinson, D. J., Smit, L. S., Worrell, R. T., Strong, T. V., Frizzell, R. A., et al. (1991) Chloride conductance expressed by delta F508 and other mutant CFTRs in Xenopus oocytes. Science 254, 1797–1799.

    Article  CAS  PubMed  Google Scholar 

  41. Smit, L. S., Strong, T. V., Wilkinson, D. J., Macek, M., Jr., Mansoura, M. K., Wood, D. L., et al. (1995) Missense mutation (G480C) in the CFTR gene associated with protein mislocalization but normal chloride channel activity. Hum. Mol. Genet. 4, 269–273

    Article  CAS  PubMed  Google Scholar 

  42. Hipper, A., Mall, M., Greger, R., and Kunzelmann, K. (1995) Mutations in the putative pore-forming domain of CFTR do not change anion selectivity of the cAMP activated Cl-conductance. FEBS Lett. 374, 312–316.

    Article  CAS  PubMed  Google Scholar 

  43. Canessa, C. M., Horisberger, J. D., and Rossier, B. C. (1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361, 467–470.

    Article  CAS  PubMed  Google Scholar 

  44. Canessa, C. M., Schild, L., Buell, G., Thorens, B., Gautschi, I., Horisberger, J. D., and Rossier, B. C. (1994) Amiloride-sensitive epithelial Na+channel is made of three homologous subunits. Nature 367, 463–467.

    Article  CAS  PubMed  Google Scholar 

  45. Mall, M., Hipper, A., Greger, R., and Kunzelmann, K. (1996) Wild type but not deltaF508 CFTR inhibits Na+conductance when coexpressed in Xenopus oocytes. FEBS Lett. 381, 47–52.

    Article  CAS  PubMed  Google Scholar 

  46. Briel, M., Greger, R., and Kunzelmann, K. (1998) Cl-transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na+channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC. J. Physiol. 508, 825–836.

    Article  CAS  PubMed  Google Scholar 

  47. Schreiber, R., Hopf, A., Mall, M., Greger, R., and Kunzelmann, K. (1999) The first-nucleotide binding domain of the cystic-fibrosis transmembrane conductance regulator is important for inhibition of the epithelial Na+channel. Proc. Natl. Acad. Sci. USA 96, 5310–5315.

    Article  CAS  PubMed  Google Scholar 

  48. Hopf, A., Schreiber, R., Mall, M., Greger, R., and Kunzelmann, K. (1999) Cystic fibrosis transmembrane conductance regulator inhibits epithelial Na+channels carrying Liddle’s syndrome mutations. J. Biol. Chem. 274, 13,894–13,899.

    Article  CAS  PubMed  Google Scholar 

  49. Chabot, H., Vives, M. F., Dagenais, A., Grygorczyk, C., Berthiaume, Y., and Grygorczyk, R. (1999) Downregulation of epithelial sodium channel (ENaC) by CFTR co-expressed in Xenopus oocytes is independent of Cl-conductance. J. Mem. Biol. 169, 175–188.

    Article  CAS  Google Scholar 

  50. Jiang, Q., Li, J., Dubroff, R., Ahn, Y. J., Foskett, J. K., Engelhardt, J., and Kleyman, T. R. (2000) Epithelial sodium channels regulate cystic fibrosis transmembrane conductance regulator chloride channels in Xenopus oocytes. J. Biol. Chem. 275, 13,266–13,274.

    Article  CAS  PubMed  Google Scholar 

  51. Kunzelmann, K., Kiser, G. L., Schreiber, R., and Riordan, J. R. (1997) Inhibition of epithelial Na+currents by intracellular domains of the cystic fibrosis transmembrane conductance regulator. FEBS Lett. 400, 341–344.

    Article  CAS  PubMed  Google Scholar 

  52. Ji, H. L., Chalfant, M. L., Jovov, B., Lockhart, J. P., Parker, S. B., Fuller, C. M., Stanton, B. A., and Benos, D. J. (2000) The cytosolic termini of the beta-and gamma-ENaC subunits are involved in the functional interactions between cystic fibrosis transmembrane conductance regulator and epithelial sodium channel. J. Biol. Chem. 275, 27,947–27,956.

    CAS  PubMed  Google Scholar 

  53. Stutts, M. J., Gabriel, S. E., Olsen, J. C., Gatzy, J. T., O’Connell, T. L., Price, E. M., and Boucher, R. C. (1993) Functional consequences of heterologous expression of the cystic fibrosis transmembrane conductance regulator in fibroblasts. J. Biol. Chem. 268, 20,653–20,658.

    CAS  PubMed  Google Scholar 

  54. Stutts, M. J., Canessa, C. M., Olsen, J. C., Hamrick, M., Cohn, J. A., Rossier, B. C., and Boucher, R. C. (1995) CFTR as a cAMP-dependent regulator of sodium channels. Science 269, 847–850.

    Article  CAS  PubMed  Google Scholar 

  55. Lukacs, G. L., Chang, X. B., Kartner, N., Rotstein, O. D., Riordan, J. R., and Grinstein, S. (1992) The cystic fibrosis transmembrane regulator is present and functional in endosomes. Role as a determinant of endosomal pH. J. Biol. Chem. 267, 14,568–14,572.

    CAS  PubMed  Google Scholar 

  56. Kartner, N., Hanrahan, J. W., Jensen, T. J., Naismith, A. L., Sun, S. Z., Ackerley, C. A., Reyes, E. F., Tsui, L. C., Rommens, J. M., Bear, C. E., and et al. (1991) Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance. Cell 64, 681–691.

    Article  CAS  PubMed  Google Scholar 

  57. Goldin, A. L. (1992) Maintenance of Xenopus laevis and oocyte injection. Methods Enzymol 207, 266–279

    Article  CAS  PubMed  Google Scholar 

  58. Nagel, G., Szellas, T., Riordan, J. R., Friedrich, T., and Hartung, K. (2001) Nonspecific activation of the epithelial sodium channel by the CFTR chloride channel. EMBO Rep. 2, 249–254

    Article  CAS  PubMed  Google Scholar 

  59. Choe, H. and Sackin, H. (1997) Improved preparation of Xenopus oocytes for patch-clamp recording. Pflugers Arch. 433, 648–652.

    Article  CAS  PubMed  Google Scholar 

  60. Gurdon, J. B. and Melton, D. A. (1981) Gene transfer in amphibian eggs and oocytes. Annu. Rev. Genet. 15, 189–218.

    Article  CAS  PubMed  Google Scholar 

  61. Lane, C., Shannon, S., and Craig, R. (1979) Sequestration and turnover of guineapig milk proteins and chicken ovalbumin in Xenopus oocytes. Eur. J. Biochem. 101, 485–495.

    Article  CAS  PubMed  Google Scholar 

  62. Firsov, D., Schild, L., Gautschi, I., Merillat, A. M., Schneeberger, E., and Rossier, B. C. (1996) Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc. Natl. Acad. Sci. USA 93, 15,370–15,375.

    Article  CAS  PubMed  Google Scholar 

  63. Peters, K. W., Qi, J., Watkins, S. C., and Frizzell, R. A. (1999) Syntaxin 1A inhibits regulated CFTR trafficking in xenopus oocytes. Am. J. Physiol. 277, C174–180.

    CAS  PubMed  Google Scholar 

  64. Pajor, A. M., Sun, N., and Valmonte, H. G. (1998) Mutational analysis of histidine residues in the rabbit Na+/dicarboxylate co-transporter NaDC-1. Biochem. J. 331, 257–264

    CAS  PubMed  Google Scholar 

  65. Olsen, J. C., Johnson, L. G., Stutts, M. J., Sarkadi, B., Yankaskas, J. R., Swanstrom, R., and Boucher, R. C. (1992) Correction of the apical membrane chloride permeability defect in polarized cystic fibrosis airway epithelia following retroviral-mediated gene transfer. Hum. Gene. Ther. 3, 253–266.

    Article  CAS  PubMed  Google Scholar 

  66. Groner, B., Hynes, N. E., Rahmsdorf, U., and Ponta, H. (1983) Transcription initiation of transfected mouse mammary tumor virus LTR DNA is regulated by glucocorticoid hormones. Nucleic Acids Res. 11, 4713–4725.

    Article  CAS  PubMed  Google Scholar 

  67. Barka, T. (1998) Effect of sodium butyrate on the expression of genes transduced by retroviral vectors. J. Cell Biochem. 69, 201–210.

    Article  CAS  PubMed  Google Scholar 

  68. Sarkadi, B., Bauzon, D., Huckle, W. R., Earp, H. S., Berry, A., Suchindran, H., Price, E. M., Olson, J. C., Boucher, R. C., and Scarborough, G. A. (1992) Biochemical characterization of the cystic fibrosis transmembrane conductance regulator in normal and cystic fibrosis epithelial cells. J. Biol. Chem. 267, 2087–2095.

    CAS  PubMed  Google Scholar 

  69. Neher, E. and Sakmann, B. (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802.

    Article  CAS  PubMed  Google Scholar 

  70. Koch, J. P. and Korbmacher, C. (2000) Mechanism of shrinkage activation of nonselective cation channels in M-1 mouse cortical collecting duct cells. J. Membr. Biol. 177, 231–242.

    Article  CAS  PubMed  Google Scholar 

  71. Stutts, M. J., Rossier, B. C., and Boucher, R. C. (1997) Cystic fibrosis transmembrane conductance regulator inverts protein kinase A-mediated regulation of epithelial sodium channel single channel kinetics. J. Biol. Chem. 272, 14,037–14,040

    Article  CAS  PubMed  Google Scholar 

  72. Ishikawa, T., Marunaka, Y., and Rotin, D. (1998) Electrophysiological characterization of the rat epithelial Na+channel (rENaC) expressed in MDCK cells. Effects of Na+and Ca2+. J. Gen. Physiol. 111, 825–846.

    Article  CAS  PubMed  Google Scholar 

  73. Chalfant, M. L., O’Brien, T. G., and Civan, M. M. (1996) Whole cell and unitary amiloride-sensitive sodium currents in M-1 mouse cortical collecting duct cells. Am. J. Physiol. 270, C998–1010.

    CAS  PubMed  Google Scholar 

  74. Letz, B. and Korbmacher, C. (1997) cAMP stimulates CFTR-like Cl-channels and inhibits amiloride-sensitive Na+channels in mouse CCD cells. Am. J. Physiol. 272, C657–666.

    CAS  PubMed  Google Scholar 

  75. Staub, O., Abriel, H., Plant, P., Ishikawa, T., Kanelis, V., Saleki, R., Horisberger, J. D., Schild, L., and Rotin, D. (2000) Regulation of the epithelial Na+channel by Nedd4 and ubiquitination. Kidney Int. 57, 809–815.

    Article  CAS  PubMed  Google Scholar 

  76. Alvarez de la Rosa, D., Zhang, P., Naray-Fejes-Toth, A., Fejes-Toth, G., and Canessa, C. M. (1999) The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes. J. Biol. Chem. 274, 37,834–37,839

    Article  Google Scholar 

  77. McCaman, R. E., Carbini, L., Maines, V., and Salvaterra, P. M. (1988) Single RNA species injected in Xenopus oocyte directs the synthesis of active choline acetyltransferase. Brain Res. 427, 107–113.

    CAS  PubMed  Google Scholar 

  78. Stuhmer, W. (1992) Electrophysiological recording from Xenopus oocytes. Methods Enzymol. 207, 319–339.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Donaldson, S.H., Poligone, E.G., Stutts, M.J. (2002). CFTR Regulation of ENaC. In: Skach, W.R. (eds) Cystic Fibrosis Methods and Protocols. Methods in Molecular Medicine™, vol 70. Humana Press. https://doi.org/10.1385/1-59259-187-6:343

Download citation

  • DOI: https://doi.org/10.1385/1-59259-187-6:343

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-897-4

  • Online ISBN: 978-1-59259-187-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics