Skip to main content

Rotavirus Entry into Tissue Culture Cells

  • Protocol
  • 519 Accesses

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 34))

Abstract

Rotavirus (RV) is a triple-protein-layered icosahedral virus, for which studies have established that the two outer-layer proteins, viral protein 4 (VP4) and viral protein 7 (VP7), are required for viral infectivity (1,2). VP7, a glycoprotein, is the major component of the outer-layer, but its role in viral entry is unclear. VP4 forms dimers extending out from the VP7-coated viral surface (3,4) and have been shown to be a determinant of host range and virulence, and is directly involved in cell attachment and RV entry into cells (58). Proteolytic cleavage of VP4 into two noncovalently associated subunits, VP8* and VP5* (2,9,10), significantly enhances viral infectivity (1113).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bridger, J. C. and Woode, G. N. (1976) Characterization of two particle types of calf rotavirus. J. Gen. Virol. 31, 245–250.

    Article  CAS  PubMed  Google Scholar 

  2. Estes, M. K., Graham, D. Y., Smith, E. M., and Gerba, C. P. (1979) Rotavirus stability and inactivation. J. Gen. Virol. 43, 403–409.

    Article  CAS  PubMed  Google Scholar 

  3. Prasad, B. V. V., Burns, J. W., Marietta, E. Estes, M. K., and Chiu, W. (1990) Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy. Nature 343, 476–479.

    Article  CAS  PubMed  Google Scholar 

  4. Shaw, A. L., Rothnagel, R., Chen, D., Ramig, R. F., Chiu, W., and Prasad, B. V. V. (1993) Three-dimensional visualization of the rotavirus hemagglutinin structure. Cell 74, 693–701.

    Article  CAS  PubMed  Google Scholar 

  5. Greenberg, H. B., Flores, J., Kalica, A. R., Wyatt, R. G., and Jones, R. (1983) Gene coding assignments for growth restriction, neutralization and subgroup specificities of the W and DS-1 strains of human rotavirus. J. Gen. Virol. 64, 313–320.

    Article  CAS  PubMed  Google Scholar 

  6. Kaljot, K. T., Shaw, R. D., Rubin, D. H., and Greenberg, H. B. (1988) Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis. J. Virol. 62, 1136–1144.

    CAS  PubMed  Google Scholar 

  7. Offit, P. A., Blavat, G., Greenberg, H. B., and Clark, H. F. (1986) Molecular basis of rotavirus virulence: role of gene segment 4. J. Virol. 57, 46–49.

    CAS  PubMed  Google Scholar 

  8. Ruggeri, F. M. and Greenberg, H. B. (1991) Antibodies to the trypsin cleavage peptide VP8 neutralize rotavirus by inhibiting binding of virions to target cells in culture. J. Virol. 65, 2211–2219.

    CAS  PubMed  Google Scholar 

  9. Espejo, R. T., Lopez, S., and Arias, C. (1981) Structural polypeptides of simian rotavirus SA11 and the effect of trypsin. J. Virol. 37, 156–160.

    CAS  PubMed  Google Scholar 

  10. Lopez, S., Arias, C. F., Bell, J. R., Strauss, J. H., and Espejo, R. T. (1985) Primary structure of the cleavage site associated with trypsin enhancement of rotavirus SA11 infectivity. Virology 144, 11–19.

    Article  CAS  PubMed  Google Scholar 

  11. Babiuk, L. A., Mohammed, K., Spence, L., Fauvel, M., and Petro, R. (1977) Rotavirus isolation and cultivation in the presence of trypsin. J. Clin. Microbiol. 6, 610–617.

    CAS  PubMed  Google Scholar 

  12. Barnett, B. B., Spendlove, R. S., and Clark, M. L. (1979) Effect of enzymes on rotavirus infectivity. J. Clin. Microbiol. 10, 111–113.

    CAS  PubMed  Google Scholar 

  13. Clark, S. M., Roth, J. R., Clark, M. L., Barnett, B. B., and Spendlove, R. S. (1981) Trypsin enhancement of rotavirus infectivity: mechanism of enhancement. J. Virol. 39, 816–822.

    CAS  PubMed  Google Scholar 

  14. Fukuhara, N., Yoshie, O., Kitaoka, S., and Konno, T. (1988) Role of VP3 in human rotavirus internalization after target cell attachment via VP7. J. Virol. 62, 2209–2218.

    CAS  PubMed  Google Scholar 

  15. Nandi, P., Charpilienne, A., and Cohen, J. (1992) Interaction of rotavirus particles with liposomes. J. Virol. 66, 3363–3367.

    CAS  PubMed  Google Scholar 

  16. Ruiz, M. C., Alonso, T. S., Charpilienne, A., Vasseur, M., Michelangeli, F., Cohen, J., and Alvarado, F. (1994) Rotavirus interaction with isolated membrane vesicles. J. Virol. 68, 4009–4016.

    CAS  PubMed  Google Scholar 

  17. Falconer, M. M., Gilbert, J. M., Roper, A. M., Greenberg, H. B., and Gavora, J. S. (1995) Rotavirus-induced fusion-from-without in tissue culture cells. J. Virol. 69, 5582–5591.

    CAS  PubMed  Google Scholar 

  18. Carrasco, L. (1994) Entry of animal viruses and macromolecules into cells. FEBS Lett. 350, 151–154.

    Article  CAS  PubMed  Google Scholar 

  19. Cuadras, M. A., Arias, C. F., and Lopez, S. (1997) Rotaviruses induce an early membrane permabilization of MA104 cells and do not require a low intracellular Ca2+ concentration to initiate their replication cycle. J. Virol. 71, 9065–9074.

    CAS  PubMed  Google Scholar 

  20. Liprandi, F., Moros, Z., Gerder, M., Ludert, J. E., Pujol, F. H., Ruiz, M. C., Michelangeli, F., Charpilienne, A., and Cohen, J. (1997) Productive penetration of rotavirus in cultured cells induces coentry of the translation inhibitor α-sarcin. Virology 237, 430–438.

    Article  CAS  PubMed  Google Scholar 

  21. Brigotti, M., Rambelli, F., Zamboni, M., Montanaro, L., and Sperti, L. (1989) Effect of α-sarcin and ribosome-inactivating proteins on the interaction of elongation factos with ribosomes. Biochem. J. 257, 723–727.

    CAS  PubMed  Google Scholar 

  22. Endo, Y. and Wool, I. G. (1982) The site of action of α-sarcin on eukaryotic ribosome. J. Biol. Chem. 257, 9054–9060.

    CAS  PubMed  Google Scholar 

  23. Gilbert, J. M. and Greenberg, H. B. (1997) Virus-like particle induced fusion-from-without in tissue culture cells; role of outer-layer proteins VP4 and VP7. J. Virol. 71, 4555–4563.

    CAS  PubMed  Google Scholar 

  24. Crawford, S. E., Labbé, M., Cohen, J., Burroughs, M. H., Zhou, Y. J., and Estes, M. K. (1994) Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J. Virol. 68, 5915–5922.

    Google Scholar 

  25. Gilbert, J. M. and Greenberg, H. B. (1998) Cleavage of rhesus rotavirus VP4 after arginine 247 is essential for rotavirus-like particle-induced fusion-from-without. J. Virol. 72, 5323–5327.

    CAS  PubMed  Google Scholar 

  26. Mackow, E. R., Shaw, R. D., Matsui, S. M., Vo, P. T., Dang, M.-N., and Greenberg, H. B. (1988) The rhesus rotavirus gene encoding protein VP3: Location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region. Proc. Natl. Acad. Sci. USA 85, 645–649.

    Article  CAS  PubMed  Google Scholar 

  27. Buckland, R. and Wild, F. (1989) Leucine zipper motif extends. Nature 338, 547–548.

    Article  CAS  PubMed  Google Scholar 

  28. Mendez, E., Arias, C. F., and Lopez, S. (1996) Interactions between the two surface proteins of rotavirus may alter the receptor-binding specificity of the virus. J. Virol. 70, 1218–1222.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Gilbert, J.M., Greenberg, H.B. (2000). Rotavirus Entry into Tissue Culture Cells. In: Gray, J., Desselberger, U. (eds) Rotaviruses. Methods in Molecular Medicine™, vol 34. Humana Press. https://doi.org/10.1385/1-59259-078-0:67

Download citation

  • DOI: https://doi.org/10.1385/1-59259-078-0:67

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-736-6

  • Online ISBN: 978-1-59259-078-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics