Skip to main content

Purification of Recombinant Chemokines from E. coli

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 138))

Abstract

The majority of chemokines are highly basic, small proteins, with a molecular mass of around 8–10 kDa. Although they do not necessarily have a high level of homology at the primary sequence level, which can be as low as 20%, although it can also be as high as 90%, the three-dimensional structure of all the chemokines solved to date has shown that they have a superimposable monomeric fold. This fold is imposed on the family by the four cysteine motif that is common to the majority of the chemokines since they all form two disulfides between Cys-1 and 3, and Cys2 and 4, whether they belong to the α or CXC or β or CC subclass. Molecular modeling of the two chemokines that deviate from the motif, the C chemokine lymphotactin which lacks a disulfide, and the CX3C chemokine neurotactin or fraktalkine which has three amino acids between the first cysteine pair, both adopt the same fold. Modeling in fact shows that either one or three residues between the first two Cys can be adopted, but not two, probably explaining why examples of CX2C chemokines do not exist.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schroder J. M. (1997) Identification and structural characterization of chemokines in lesional skin material of patients with inflammatory skin disease. MethodsEnzymol. 288, 266–297.

    CAS  Google Scholar 

  2. Schroder J. M. (1997) Isolation and purification of neutrophil-activating peptide-4: a chemokine missing two cysteines. Methods Enzymol. 287, 216.

    Article  PubMed  CAS  Google Scholar 

  3. Noso N., Proost P., van Damme J., and Schroder J. M. (1994) Human monocyte chemotactic proteins-2 and 3 (MCP-2 and MCP-3) attract human eosinophilsn and desensitize the chemotactic responses towards RANTES. Biochem. Biophys.Res. Commun. 200, 1470–1476.

    Article  PubMed  CAS  Google Scholar 

  4. Proost P., Struyf S., Couvreur M., Lenaerts J. P., Conings R., Menten P., Verhaert P., Wuyts A., and van Damme J. (1998) Posttranslational modifications affect the activity of the human monocyte chemotactic proteins MCP-1 and MCP-2: identification of MCP-2(6-76) as a natural chemokine inhibitor. J. Immunol. 160, 4034–4041.

    PubMed  CAS  Google Scholar 

  5. Kuschert G. S., Hoogewerf A. J., Proudfoot A. E. I., Chung C. W., Cooke R., Hubbard R. E., Wells T. N. C., and Sanderson P. N. (1998) Identification of a glycosoaminoglaycan binding site on human interleukin-8. Biochemistry 37, 11,193–11,201.

    Article  PubMed  CAS  Google Scholar 

  6. Proudfoot A.E., Peitsch M. C., Power C. A., Allet B., Mermod J. J., Bacon K., and Wells T. N. (1997) Structure and bioactivity of recombinant human CTAP-III and NAP-2. J. Protein Chem. 16, 37–39.

    Article  PubMed  CAS  Google Scholar 

  7. Alouani S., Gaertner H. F., Mermod J. J., Power C. A., Bacon K. B., Wells T. N., and A.E. Proudfoot A. E. (1995) A fluorescent interleukin-8 receptor probe produced by targetted labelling at the amino terminus. Eur. J. Biochem. 227, 328–334.

    Article  PubMed  CAS  Google Scholar 

  8. Proudfoot A. E., Power C. A., Hoogewerf A., Montjovent M. O., Borlat F., and Wells T. N. (1995) Characterisation of the RANTES/MIP-1 alpha receptor (CC CKR-1) stably transfected in HEK 293 cells and the recombinant ligands. FEBS Lett. 376, 19–23.

    Article  PubMed  CAS  Google Scholar 

  9. Solari R., Offord R. E., Remy S., Aubry J. P., Wells T. N., Whitehorn E., Oung T., and Proudfoot A. E. (1997) Receptor-mediated endocytosis of CC-chemokines. J. Biol. Chem. 272, 9617–9620.

    Article  PubMed  CAS  Google Scholar 

  10. Proudfoot A. E., Power C. A., Hoogewerf A. J., Montjovent M. O., Borlat F., Offord R. E., and Wells T. N. (1996) Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. J. Biol.Chem. 271, 2599–2603.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Proudfoot, A.E.I., Borlat, F. (2000). Purification of Recombinant Chemokines from E. coli . In: Proudfoot, A.E.I., Wells, T.N.C., Power, C.A. (eds) Chemokine Protocols. Methods in Molecular Biology, vol 138. Humana Press. https://doi.org/10.1385/1-59259-058-6:75

Download citation

  • DOI: https://doi.org/10.1385/1-59259-058-6:75

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-722-9

  • Online ISBN: 978-1-59259-058-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics