Skip to main content

Targeted Expression of Chemokines In vivo

  • Protocol
Chemokine Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 138))

Abstract

One of the main reasons for interest in chemokines is the ease with which their expression can be documented in physiological settings involving leukocyte trafficking or in diseases characterized by inflammatory cell infiltration. In the case of most ELR-containing CXC chemokines, their ability to attract neutrophils in vitro is paralleled by a similar activity when injected In vivo (13). However, in the case of non-ELR CXC and most CC chemokines, injection In vivo has resulted in disparate and inconsistent reports of activity (46). Thus, in order to be able to infer anything about the function of chemokines in normal physiology or disease, it must be demonstrated that their in vitro activities accurately predict their In vivo activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Colditz I., Zwahlen R., Dewald B., and Baggiolini M. (1989) In vivo inflammatory activity of neutrophil-activating factor, a novel chemotactic peptide derived from human monocytes. Am. J. Pathol. 134, 755–760.

    PubMed  CAS  Google Scholar 

  2. Foster S. J., Aked D. M., Schroder J. M., and Christophers E. (1989) Acute inflammatory effects of a monocyte-derived neutrophil-activating peptide in rabbit skin. Immunology 67, 181–183.

    PubMed  CAS  Google Scholar 

  3. Larsen C. G., Anderson A. O., Oppenheim J. J., and Matsushima K. (1989) Production of interleukin 8 by human dermal fibroblasts and keratinocytesin response to interleukin 1 or tumor necrosis factor. Immunology 68, 31–36.

    PubMed  CAS  Google Scholar 

  4. Van Damme J., Proost P., Lenaerts J. P., and Opdenakker G. (1992) Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family. J. Exp. Med. 176, 59–65.

    Article  PubMed  Google Scholar 

  5. Zachariae C. O. C., Anderson A. O., Thompson H. L., Appella E., Mantovani A., Oppenheim J. J., and Matsushima K. (1990) Properties of monocyte chemo-tactic and activating factor (MCAF) purified from a human fibrosarcoma cell line. J. Exp. Med. 171, 2177–2182.

    Article  PubMed  CAS  Google Scholar 

  6. Rutledge B. J., Rayburn H., Rosenberg R., North R. J., Gladue R. P., Corless C. L., and Rollins B. J. (1995) High level monocyte chemoattractant protein-1 expression in transgenic mice increases their susceptibility to intracellular patho-gens. J. Immunol. 155, 4838–4843.

    PubMed  CAS  Google Scholar 

  7. Cook D. N., Beck M. A., Coffman T. M., Kirby S. L., Sheridan J. F., Pragnell I. B., and Smithies O. (1995) Requirement of MIP-1 alpha for an inflammatory response to viral infection. Science 269, 1583–1585.

    Article  PubMed  CAS  Google Scholar 

  8. Lu B., Rutledge B. J., Gu L., Fiorillo J., Lukacs N. W., Kunkel S. L., et al. (1998) Abnormalities in monocyte recruitment and cytokine expression in mono-cyte chemoattractant protein 1-deficient mice. J. Exp. Med. 187, 601–608.

    Article  PubMed  CAS  Google Scholar 

  9. Simonet W. S., Hughes T. M., Nguyen H. Q., Trebasky L. D., Danilenko D. M., and Medlock E. S. (1994) Long-term impairment of neutrophil migration in mice overexpressing human interleukin-8. J. Clin. Invest 94, 1310–1319.

    Article  PubMed  CAS  Google Scholar 

  10. Lira S. A., Zalamea P., Heinrich J. N., Funetes M. E., Carrasco D., Lewin A. C., et al. (1994) Expression of the chemokine N51/KC in the thymus and epidermis of transgenic mice results in a marked infiltration of a single class of inflammatory cells. J. Exp. Med. 180, 2039–2048.

    Article  PubMed  CAS  Google Scholar 

  11. Fuentes M. E., Durham S. K., Swerdel M. R., Lewin A. C., Barton D. S., Megill J. R., et al. (1995) Controlled recruitment of monocytes/macrophages to specific organs through transgenic expression of MCP-1. J. Immunol. 155, 5769–5776.

    PubMed  CAS  Google Scholar 

  12. Nakamura K., Williams I. R., and Kupper T. S. (1995) Keratinocyte-derived monocyte chemoattractant protein 1 (MCP-1): analysis in a transgenic model dem-onstrates MCP-1 can recruit dendritic and Langerhans cells to skin. J. Invest. Dermatol. 105, 635–643.

    Article  PubMed  CAS  Google Scholar 

  13. Tani M., Fuentes M. E., Peterson J. W., Trapp B. D., Durham S. K., Loy J. K., et al. (1996) Neutrophil infiltration, glial reaction, and neurological disease in ransgenic mice expressing the chemokine N51/KC in oligodendrocytes. J. Clin. Invest. 98, 529–539.

    Article  PubMed  CAS  Google Scholar 

  14. Gunn M. D., Nelken N. A., Liao X., and Williams L. T. (1997) Monocyte chemoattractant protein-1 is sufficient for the chemotaxis of monocytes and lymphocytes in transgenic mice but requires an additional stimulus for inflammatory activation. J. Immunol. 158, 376–383.

    PubMed  CAS  Google Scholar 

  15. Grewal I. S., Rutledge B. J., Fiorillo J. A., Gu L., Gladue R. P., Flavell R. A., and Rollins B. J. (1997) Transgenic monocyte chemoattractant protein-1 (MCP-1) in pancreatic islets produces monocyte-rich insulitis without diabetes: abrogation by a second transgene expressing systemic MCP-1. J. Immunol. 159, 401–408.

    PubMed  CAS  Google Scholar 

  16. Hogan B., Costantini F., and Lacy E. (1986) Manipulating the Mouse Embryo: A Laboratory Manual. Cold Spring Harbor Laboratory Cold Spring Harbor, NY.

    Google Scholar 

  17. Laird P. W., Zijderveld A., Linders K., Rudnicki M. A., Jaenisch R., and Berns A. (1991) Simplified mammalian DNA isolation procedure. Nucleic Acids Res. 19, 4293.

    Article  PubMed  CAS  Google Scholar 

  18. Chirgwin J. M., Przybyla A. E., MacDonald R. J., and Rutter W. J. (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299.

    Article  PubMed  CAS  Google Scholar 

  19. Taketo M., Schroeder A. C., Mobraaten L. E., Gunning K. B., Hanten G., Fox R. R., et al. (1991) FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc. Natl. Acad. Sci. USA 88, 2065–2069.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Grewal, I., Gu, L., Tseng, S., Rollins, B.J. (2000). Targeted Expression of Chemokines In vivo . In: Proudfoot, A.E.I., Wells, T.N.C., Power, C.A. (eds) Chemokine Protocols. Methods in Molecular Biology, vol 138. Humana Press. https://doi.org/10.1385/1-59259-058-6:243

Download citation

  • DOI: https://doi.org/10.1385/1-59259-058-6:243

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-722-9

  • Online ISBN: 978-1-59259-058-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics