Skip to main content

Evaluation of Individual-Cell Motility

  • Protocol
Cytoskeleton Methods and Protocols

Abstract

The coordinated displacement of a cell is a highly complex process which relies on the integration of a series of signaling pathways and on the function of a large number of molecular components including all main structures of the cytoskeleton (1,2). Thus, a detailed knowledge of the regulation and function of the cytoskeleton is of central importance for the understanding of cell motility, and conversely, investigations of cell motility may shed light on the function of cytoskeletal components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hendrix M. J. C., Seftor E. A., Chu Y.-W., Trevor K. T., and Seftor R. E. B. (1996) Role of intermediate filaments in migration, invasion and metastasis. Cancer Metastasis Rev. 15, 507–525.

    Article  PubMed  CAS  Google Scholar 

  2. Waterman-Storer C. M. and Salmod E. D. (1999) Positive feedback interactions between microtubules and actin dynamics during cell motility. Curr. Opin. Cell Biol. 11, 61–67.

    Article  PubMed  CAS  Google Scholar 

  3. Lauffenburger D. A. and Linderman J. J. (1993) Chapter 6. Receptor-mediated cell behavioral responses, in Receptors. Models of binding, trafficking, and signaling. Oxford University Press New York, Oxford. pp. 236–344.

    Google Scholar 

  4. Boyden S. (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115, 453–466.

    Article  PubMed  CAS  Google Scholar 

  5. Tran P. O. T., Hinman L. E., Unger G. M., and Sammak P. J. (1999) A would-induced [Ca2+]i increase and its transcriptional activation of immediate early genes is important in the regulation of motility. Exp. Cell Res. 246, 319–326.

    Article  PubMed  CAS  Google Scholar 

  6. McCutcheon M. (1924) Studies on the locomotion of leukocytes. III. The rate of locomotion of human symphocytes in vitro. Amer. J. Physiol. 69, 279–282.

    Google Scholar 

  7. Lewis W. H. (1934) On the locomotion of the polymorphonuclear neutrophiles of the rat in autoplasma cultures. Bull. Johns Hopkins Hosp. 55, 273–279.

    Google Scholar 

  8. Dixon H. M. and McCutcheon M. (1936) Chemotropism of leucocytes in relation to their rate of locomotion. Proc. Soc. Exp. Biol. Med. 34, 173–176.

    CAS  Google Scholar 

  9. Abercrombie M. and Heaysman J. E. M. (1953) Observations on the social behaviour of cells in tissue culture. 1. Speed of movement of chick heart fibro-blasts in relation to their mutual contacts. Exp. Cell Res. 5, 111–131.

    Article  PubMed  CAS  Google Scholar 

  10. Berg H. C. (1983) Random walks in biology. Princeton University Press Princeton, New Jersey.

    Google Scholar 

  11. Gail M. H. and Boone C. W. (1970) The locomotion of mouse fibroblasts in tissue culture. Biophys. J. 10, 980–993.

    Article  PubMed  CAS  Google Scholar 

  12. Dunn G. A. (1983) Characterising a kinesis response: Time averaged measures of cell speed and directional persistence. Agents Actions Suppl. 12, 14–33.

    PubMed  CAS  Google Scholar 

  13. Doob J. L. (1942) The Brownian movement and stochastic equations. Ann Math. 43, 351–369.

    Article  Google Scholar 

  14. Dunn G. A. and Brown A. F. (1987) A unified approach to analysing cell motil-ity. J. CellSci. Suppl. 8, 81–102.

    CAS  Google Scholar 

  15. Stokes C. L. and Lauffenburger D. A. (1991) Analysis of the roles of micro vessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403.

    Article  PubMed  CAS  Google Scholar 

  16. Stokes C. L., Lauffenburger D. A., and Williams S. K. (1991) Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J. Cell Sci. 99, 419–430.

    PubMed  Google Scholar 

  17. Soll D. R. (1995) The use of computers in understanding how animal cells crawl. I. Rev. Cytology 163, 43–104.

    Article  CAS  Google Scholar 

  18. Soll D. R. and Voss E. (1998) Chapter 2. Two-and three-dimensional computer systems for analyzing how animal cells crawl, in Motion analysis of living cells. (Soll D. R. and Wessels D., eds.). Wiley-Liss New York. pp. 25–52.

    Google Scholar 

  19. Glasgow J. E. and Daniele R. P. (1994) Role of microtubules in random cell migration: stabilization of cell polarity. Cell Motil. Cytoskeleton. 27, 88–96.

    Article  PubMed  CAS  Google Scholar 

  20. Glasgow J. E., Farrell B. E., Fisher E. S., Lauffenburger D. A., and Daniele R. P. (1989) The motile response of alveolar macrophages. An experimental study using single-cell and cell populations approaches. Am Rev. Respir. Dis. 139, 320–329.

    PubMed  CAS  Google Scholar 

  21. Tranquillo R. T., Fisher E. S., Farrell B. E., and Lauffenburger D. A. (1988) A stochastic model for chemosensory cell movement: application to neutrophil and macrophage persistence and orientation. Math. Biosci. 90, 287–303.

    Article  Google Scholar 

  22. Shenderov A. D. and Sheetz M. P. (1997) Inversely correlated cycles in speed and turning in an ameba: an oscillatory model of cell locomotion. Biophys. J. 72, 2382–2389.

    Article  PubMed  CAS  Google Scholar 

  23. Fisher N. I. (1995) Chapter 4. Analysis of a single sample of data, in Statistical analysis of circular data. Cambridge University Press. pp. 59–103.

    Google Scholar 

  24. Germain F., Doise A., Ronot X., and Tracqui P. (1999) Characterization of cell deformation and migration using a parametric estimation of image motion. IEEE Transactions Biomed. Eng. 46, 584–600.

    Article  CAS  Google Scholar 

  25. Otmer G. H., Dunbar S. R., and Alt W. (1988) Models of dispersal in biological systems. J. Math. Biol. 26, 263–298.

    Article  Google Scholar 

  26. Tourtellot M. K., Collins R. D., and Bell W.J. (1991) The problem of movelength and turn definition in analysis of orientation data. J. Ther. Biol. 150, 287–297.

    Article  CAS  Google Scholar 

  27. Boyarsky A. (1975) A Markov chain model for human granulocyte movement. J. Math. Biol. 2, 69–78.

    Article  Google Scholar 

  28. Boyarsky A. and Noble P. B. (1977) A Markov chain characterization of human neutrophil locomotion under neutral and chemotactic conditions. Can. J. Physiol. Pharmacol. 55, 1–6.

    PubMed  CAS  Google Scholar 

  29. Lee Y., Markenscoff P. A., McIntire L. V., and Zygourakis K. (1995) Characterization of endothelial cell locomotion using a Markov chain model. Biochem. Cell Biol. 73, 461–472.

    Article  PubMed  CAS  Google Scholar 

  30. Noble P. B. and Levine M. D. (1986) Computer-assisted analysis of cell locomotion and chemotaxis. CRC Press, Inc. Boca Raton, Florida.

    Google Scholar 

  31. Chon J. H., Vizena D. A., Rock B. M., and Chaikof E. L. (1997) Characterization of single-cell migration using a computer-aided fluorescence time-lapse videomicroscopy system. Anal. Biochem. 252, 246–254.

    Article  PubMed  CAS  Google Scholar 

  32. Chon J. H., Netzel R., Rock B. M., and Chaikof E. L. (1998) a4b1 and a5b1 control cell migration on fibronectin by differentially regulating cell speed and motile cell phenotype. Ann. Biomed. Eng. 26, 1091–1101.

    Article  PubMed  CAS  Google Scholar 

  33. Goldbrunner R. H., Bouterfa H., Vince G. H., Bernstein J. J., Roosen K., and Tonn J.-C. (1997) Transfection and dye premarking of human and rat glioma cell lines affects adhesion, migration and proliferation. Anticancer Res. 17, 4467–4472.

    PubMed  CAS  Google Scholar 

  34. Farina K. L., Wyckoff J. B., Rivera J., Lee H., Segall J. E., Condeelis J. S., and Jones J. G. (1998) Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein. Cancer Res. 58, 2528–2532.

    PubMed  CAS  Google Scholar 

  35. Giuliano K. A. (1996) Dissecting the individuality of cancer cells: The morphological and molecular dynamics of single human glioma cells. Cell Motil. Cytoskeleton 35, 237–253.

    Article  PubMed  CAS  Google Scholar 

  36. Rydgren L., Norberg B., Hakansson C. H., and v Mecklenburg Soderstrom N. (1976) Lymphocyte locomotion. I. The initiation, velocity, pattern, and path of locomotion in vitro. Lymphology 9, 89–96.

    PubMed  CAS  Google Scholar 

  37. Rydgren L., Brodin H., HÅkansson C.-H., Norberg A., Norberg B., and Westrup C. (1980) The computer leucocyte. Analysis of the random movement of leucocytes in a visual field by means of computer simulation. Scand. J. Haematol. 25, 45–50.

    PubMed  CAS  Google Scholar 

  38. Allan R. B. and Wilkinson P. C. (1978) A visual analysis of chemotactic and chemokinetic locomotion of human neutrophil leucocytes. Exp. Cell Res. 111, 191–203.

    Article  PubMed  CAS  Google Scholar 

  39. Tranquillo R. T. and Lauffenburger D. A. (1987) Stochastic model of leukocyte chemosensory movement. J. Math. Biol. 25, 229–262.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Walmod, P.S. et al. (2001). Evaluation of Individual-Cell Motility. In: Gavin, R.H. (eds) Cytoskeleton Methods and Protocols. Methods in Molecular Biology™, vol 161. Humana Press. https://doi.org/10.1385/1-59259-051-9:059

Download citation

  • DOI: https://doi.org/10.1385/1-59259-051-9:059

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-771-7

  • Online ISBN: 978-1-59259-051-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics