Skip to main content

Strategies for Cloning New MMPs and TIMPs

  • Protocol
Matrix Metalloproteinase Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 151))

  • 821 Accesses

Abstract

Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) play important roles in the remodeling of connective tissues associated with normal mammalian development and growth, and in the degradative processes accompanying diseases such as rheumatoid arthritis, pulmonary emphysema or tumor cell invasion and metastasis (1). Because of the importance of these proteins in both normal and pathological conditions, over the last years many groups have tried to clone the diverse MMPs mediating these matrix remodeling events as well as the different TIMPs able to balance their proteolytic activities. The first evidence for the occurrence of MMPs was reported about 35 yr ago by Gross and Lapiere who described the presence of diffusible collagenolytic factors in tissue cultures of bullfrog tadpoles (2). Some years after this finding, several groups independently reported the existence of naturally occurring metalloproteinase inhibitors known as TIMPs and active against most members of the MMP family (3). The utilization of standard biochemical methods allowed the isolation of the first MMP and TIMP family members and their subsequent physico-chemical characterization. However, these studies were seriously hampered by the small amount of proteases and inhibitors usually found in normal conditions. The observation that these proteins were much more abundant in a series of pathological conditions such as inflammatory or tumor processes or during extracellular matrix remodeling events, facilitated the identification of additional members of both families and the molecular cloning of the first MMPs and TIMPs. More recently, the advent of more powerful molecular biology techniques and improved cloning strategies has made it possible to identify a large number of novel MMP and TIMP family members. To date, 18 distinct MMPs have been identified, cloned, and characterized in vertebrates (4). In addition, MMPs have been also cloned from embryonic sea urchin (5), green alga (6) and soybean leaves (7). The complexity of the TIMP family has also expanded during the last years and a total of 4 distinct inhibitors with ability to control the proteolytic activity of MMPs have been cloned and characterized at the molecular level (8). These new additions to the growing list of MMPs and TIMPs have provided much more complexity to the field but have also opened new views on the role of these proteins in normal and pathological processes. Thus, evidence is accumulating that MMPs are not exclusively involved in the proteolytic degradation of extracellular matrix components, playing also direct roles in essential cellular processes such as differentiation, proliferation, angiogenesis and apoptosis (9). Similarly, TIMPs appear to have additional roles other than their direct inhibition of MMP proteolytic activity, and a number of reports have described their involvement in cell growth (10). The delineation of expanding roles for these proteins in a wide variety of biological processes has also reinforced previous observations indicating that misregulation of these proteases and inhibitors can have important pathological consequences. Nevertheless, it seems clear that most of this progress has been only possible by the cloning of an unexpected large number of these proteins. This chapter will give an overview of the different strategies used for cloning MMPs and TIMPs and their application to the identification and characterization of putative yet unknown members of these protein families that play essential roles in both normal and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birkedal-Hansel H., Moore W. G. I., Bodden M. K., Windsor L. J., Birkedal-Hansen B., DeCarlo A., and Engler J. A. (1993) Matrix metalloproteinases a review. Crit. Rev. Oral Biol. Med. 4, 197–250.

    Google Scholar 

  2. Gross J. and Lapiere C. M. (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc. Natl. Acad. Sci. USA 48, 1014–1022.

    Article  PubMed  CAS  Google Scholar 

  3. Gomez D. E., Alonso D. F., Yoshiji H., and Thorgeirsson U. P. (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur. J. Cell Biol. 74, 11–122

    Google Scholar 

  4. Uría J. A., Jiménez M. J., Balbín M., Freije J. P. and López-Otín C. (1998) Differential effects of TGFb on the expression of collagenase-1 and collagenase-3 in human fibroblasts. J. Biol. Chem. 273, 9769–9777

    Article  PubMed  Google Scholar 

  5. Lepage T. and Gache C. (1990) Early expression of a collagenase-like hatching enzyme gene in the sea urchin embryo. EMBO J. (bd9), 3003–3012.

    Google Scholar 

  6. Kinoshita T., Fuzukawa H., Shimada T., Saito T., and Matsuda Y. (1992) Primary structure and expression of a gamete lytic enzyme in Chlamydomonas reinhardtii: similarity of functional domains to matrix metalloproteases. Proc. Natl. Acad. Sci. USA 89, 4693–4697.

    Article  PubMed  CAS  Google Scholar 

  7. Pak J. H., Liu C. Y., Huangpu J. and Graham J. S. (1997) Construction and characterization of the soybean leaf metalloproteinase cDNA. FEBS Lett. 404, 283–288.

    Article  PubMed  CAS  Google Scholar 

  8. Greene J., Wang M., Liu Y. E., Raymond L. A., Rosen C., and Shi Y. E. (1996) Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J. Biol. Chem. 271, 30,375–30,380.

    Article  PubMed  CAS  Google Scholar 

  9. Werb Z. (1997) ECM and cell surface proteolysis: Regulating cellular ecology. Cell 91, 439–442.

    Article  PubMed  CAS  Google Scholar 

  10. Hayakawa T., Yamashita K., Tanzawa K., Uchijima E. and Iwata K. (1992) Growth promoting activity of tissue inhibitor of metalloproteinase-1 (TIMP-1) for a wide range of cells. FEBS Lett. 298, 29–32.

    Article  PubMed  CAS  Google Scholar 

  11. Matrisian L. M., LeRoy P., Ruhlmann C., Gesnel C., and Breathnach. (1986) Isolation of the oncogene and epidermal growth factor-induced transin gene:complex control in rat fibroblasts. Mol. Cell. Biol. 6, 1679–1686.

    PubMed  CAS  Google Scholar 

  12. Basset P., Bellocq J. P., Wolf C., Stoll I., Huntin P., Limacher J. M., Podhajcer O. L., Chenard M. P., Rio M. C., and Chambon P. (1990) A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature, 348, 699–704.

    Article  PubMed  CAS  Google Scholar 

  13. Goldberg G. I., Wilhelm S. M., Kronberger A., Bauer E. A., Grant G. A., and Eisen A. Z. (1986) Human fibroblast collagenase: Complete primary structure and homology to an oncogene transformation-induced rat protein. J. Biol. Chem. 261, 6600–6605.

    PubMed  CAS  Google Scholar 

  14. Whitham S. E., Murphy G., Angel P., Rahmsdorf H-J., Smith B. J., Lyons A., Harris T. J. R., Reynolds J. J., Herrlich P., and Docherty A. J. P. (1986) Comparison of human stromelysin and collagenase by cloning and sequence analysis. Biochem. J. 240, 913–916.

    PubMed  CAS  Google Scholar 

  15. Templeton N. S., Brown P. D., Levy A. T., Margulies I. M. K., Liotta L. A., and Stetler-Stevenson W. G. (1990) Cloning and characterization of human tumor cell interstitial collagenase. Cancer Res. 50, 5431–5437.

    PubMed  CAS  Google Scholar 

  16. Shingleton W. D., Hodges D. J., Brick P., and Cawston T. E. (1997) Collagenase: a key enzyme in collagen turnover. Biochem. Cell. Biol. 74, 759–775.

    Article  Google Scholar 

  17. Devarajan P., Mookhtiar K., Wart H. V., and Berliner N. (1991). Structure and expression of the cDNA encoding human neutrophil collagenase. Blood 77, 2731–2738.

    PubMed  CAS  Google Scholar 

  18. Dubnick M., Lewis L. K., and Mount D. W. (1988) BIGPROBE: A complete program that predicts the sequence of long oligonucleotide probes with high reliability. Nucleic. Acid. Res. 16, 1703.

    Article  PubMed  CAS  Google Scholar 

  19. Hasty K. A., Pourmotabbed T. F., Goldberg G. I., Thompson J. P., Spinella D. G., Stevens R. M., and Mainardi C. L. (1990) Human neutrophil collagenase. A distinct gene product with homology to other matrix metalloproteinases. J. Biol.Chem. 265, 11,421–11,424.

    PubMed  CAS  Google Scholar 

  20. Wilhelm S. M., Collier I. E., Kronberger A., Eisen A. Z., Marmer B. L., Grant G. A., Bauer E. A., and Goldberg G. I. (1987) Human skin fibroblast stromelysin: structure, glycosylation, substrate specificity, and differential expression in normal and tumorigenic cells. Proc. Natl. Acad. Sci. USA 84, 6725–6729.

    Article  PubMed  CAS  Google Scholar 

  21. Collier I. E., Wilhelm S. M., Eisen A. Z., Marmer B. L., Grant G. A., Seltzer J. L., Kronberger A., He C., Bauer E. A., and Goldberg G. I. (1988) H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J. Biol.Chem., 263, 6579–6587.

    PubMed  CAS  Google Scholar 

  22. Wilhelm S. M., Collier I. E., Marmer B. L., Eisen A. Z., Grant G. A., and Goldberg G. I. (1989) SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase wich is identical to that secreted by normal human macrophages. J. Biol. Chem. 264, 17,213–17,221.

    PubMed  CAS  Google Scholar 

  23. Stricklin G. P. and Welgus H. G. (1983) Human skin fibroblast collagenase inhibitor. Purification and biochemical characterization. J. Biol. Chem. 258, 12,252–12,258.

    PubMed  CAS  Google Scholar 

  24. Docherty A. J. P., Lyons A., Smith B. J., Wright E. M., Stephens P. E., and Harris T. J. R. (1985) Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature 318, 66–69.

    Article  PubMed  CAS  Google Scholar 

  25. Gasson J. C., Golde D. W., Kaufman S. E., Westbrook C. A., Hewick R. M., Kaufman R. J., Wong G. G., Temple P. A., Leary A., Brown E. L., Orr E. C., and Clark S. C. (1985) Molecular characterization and expression of the gene encoding human erythroid-potentiating activity. Nature 315, 768–771.

    Article  PubMed  CAS  Google Scholar 

  26. Goldberg G. I., Marmer B. L., Grant G. A., Eisen A. Z., Wilhelm S., and He C. (1989) Human 72-kDa type IV collagenase forms with a tissue inhibitor of metalloproteases designated TIMP-2. Proc. Natl. Acad. Sci. USA 86, 8207–8211.

    Article  PubMed  CAS  Google Scholar 

  27. Stetler-Stevenson W. G., Krutzsch H. C., and Liotta L. A. (1989) Tissue inhibi tor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J. Biol. Chem. 264, 17,374–17,378.

    PubMed  CAS  Google Scholar 

  28. Boone T. C., Johnson M. J., De Clerck Y. A., and Langley K. E. (1990) cDNA cloning and expression of a metalloproteinase inhibitor related to tissue inhibitor of metalloproteinases. Proc. Natl. Acad. Sci. U.S.A. 87, 2800–2804.

    Article  PubMed  CAS  Google Scholar 

  29. Breathnach R. Matrisian L. M., Gesnel M. C. Staub A., and Leroy P. (1987) Sequences coding for part of oncogene-induced transin are higly conserved in a related rat gene. Nucleic Acid Res. 15, 1139–1151.

    Article  PubMed  CAS  Google Scholar 

  30. Muller D., Quantin B., Gesnel M-C., Millon-Collard R., Abecassis J., and Breathnach R. (1988) The collagenase gene family in human consists of at least four members. Biochem. J. 253, 187–192.

    PubMed  CAS  Google Scholar 

  31. Abramson S. R., Conner G. E., Nagase H., Neuhaus Y., and Woessner J. F.(1995) Characterization of rat uterine matrilysin and its cDNA: relationship to human pump-1 and activation of procollagenases. J. Biol. Chem. 270, 16,016–16,022.

    Article  PubMed  CAS  Google Scholar 

  32. Stolow M. A., Bauzon D. D., Li J., Sedgwick T., Liang V.C-T., Sang Q. A., and Shi Y-B. (1996) Identification and characterization of a novel collagenase in Xenopus laevis: possible roles during frog development. Mol. Biol. Cell 7, 1471–1483.

    PubMed  CAS  Google Scholar 

  33. Shapiro S. D., Kobayashi D. K., and Ley T. J. (1993) Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J. Biol. Chem. 268, 23,824–23,829.

    PubMed  CAS  Google Scholar 

  34. Llano E., Pendás A. M., Knaüper V., Sorsa T., Salido E., Murphy G., Simmer J. P., Bartlett J. D., and López-Otín C. (1997) Identification and structural and functional characterization of human enamelysin (MMP-20). Biochemistry 36, 15,101–15,108.

    Article  PubMed  CAS  Google Scholar 

  35. Freije J. M. P., Díez-Itza I., Balbín M., Sánchez L. M., Blasco R., Tolivia J., and López-Otín C. (1994) Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J. Biol.Chem. 269, 16,766–16,773.

    PubMed  CAS  Google Scholar 

  36. Mitchell P. G., Magna H. A., Reeves L. M., Lopresti-Morrow L. L., Yocum S. A., Rosner P. J., Geoghegan K. F., and Hambor J.E. (1996) Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J. Clin. Invest. 97, 761–768.

    Article  PubMed  CAS  Google Scholar 

  37. Stahle-Bäckdahl M., Sandsted B., Bruce K., Lindahl A., Jiménez M. G., Vega J. A., and López-Otín C. (1997) Collagenase-3 (MMP-13) is expressed during human fetal ossification and re-expressed in postnatal bone remodeling and in rheumatoid arthritis. Lab. Invest. 76, 717–728.

    PubMed  Google Scholar 

  38. Sato H., Takino T., Okada Y., Cao J., Shinagawa A., Yamamoto E., and Seiki M. (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370, 61–65.

    Article  PubMed  CAS  Google Scholar 

  39. Will H. and Hinzmann B. (1995) cDNA sequence and mRNA distribution of a novel human matrix metalloproteinase with a potential transmembrane domain. Eur. J. Biochem. 231, 602–608.

    Article  PubMed  CAS  Google Scholar 

  40. Takino T., Sato H., Shinagawa A., and Seiki M. (1995) Identification of the second membrane-type matrix metalloproteinase (MT-MMP2) gene from a human placenta cDNA library. J. Biol. Chem., 270, 23,013–23,020.

    Article  PubMed  CAS  Google Scholar 

  41. Puente X. S., Pendás A. M., Llano E., Velasco G. and López-Otín C. (1996) Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Res. 56, 944–949.

    PubMed  CAS  Google Scholar 

  42. Shapiro S. D., Griffin G. L., Gilbert D., Jenkins N. A., Copeland N. G., Welgus H. G., Senior R. M., and Ley T. J. (1992) Molecular cloning, chromosomal localization, and bacterial expression of a murine macrophage metalloelastase. J. Biol.Chem. 267, 4664–4671.

    PubMed  CAS  Google Scholar 

  43. Bartlett J. D., Simmer J. P., Xue J., Margolis H. C., and Moreno E. C. (1996) Molecular cloning and mRNA tissue distribution of a novel matrix metalloproteinase isolated from a porcine enamel organ. Gene 183, 123–128.

    Article  PubMed  CAS  Google Scholar 

  44. Yang M., Murray M. T., and Kurkinen M. (1997) A novel matrix metalloproteinase gene (XMMP) encoding vitronectin-like motifs is transiently expressed in Xenopus laevis early embryo development. J. Biol. Chem. 272, 13,527–13,533.

    Article  PubMed  CAS  Google Scholar 

  45. Uría J. A., Ferrando A. A., Velasco G., Freije J. M. P., and López-Otín C.(1994) Structure and expression in breast tumors of human TIMP-3, a new member of the metalloproteinase inhibitor family. Cancer Res. 54, 2091–2094.

    PubMed  Google Scholar 

  46. Silbiger S. M., Jacobsen V. L., Cupples R. L., and Koski R. A. (1994) Cloning of cDNAs encoding human TIMP-3, a novel member of the tissue inhibitor of metalloproteinase family. Gene 141, 293–297.

    Article  PubMed  CAS  Google Scholar 

  47. Apte S. S., Mattei M. G., and Olsen B. R. (1994) Cloning of the cDNA encoding human tissue inhibitor of metalloproteinases-3 (TIMP-3) and mapping of the TIMP3 gene to chromosome 22. Genomics 19, 86–90.

    Article  PubMed  CAS  Google Scholar 

  48. Pavloff N., Staskus P. W., Kishnani N. S., and Hawkes S. P. (1992) A new inhibitor of metalloproteinases from chicken: ChIMP-3. J. Biol. Chem. 267, 17,321–17,326.

    PubMed  CAS  Google Scholar 

  49. Anand-Apte B., Bao L., Smith R., Iwata K., Olsen B. R., Zetter B. and Apte S. S. (1997) A review of tissue inhibitor of metalloproteinases-3 (TIMP-3) and experimental analysis of its effect on primary tumor growth. Biochem. Cell Biol. 74, 853–862.

    Article  Google Scholar 

  50. Weber B. H., Vogt G., Pruett R. C., Stohr H., and Felbor U. (1994) Mutations in the tissue inhibitor of metalloproteinase-3 (TIMP-3) in patients with Sorsby’s fundus distrophy. Nat. Genet. 8, 352–356.

    Article  PubMed  CAS  Google Scholar 

  51. Adams M. D., Kelley J. M., Gocayne J. D., Dubnick M., et al., (1991) Initial assessment of human gene diversity and expression pattern based upon 83 million nucleotides of cDNA sequence. Nature 377, 3–17.

    Google Scholar 

  52. Soares M. B., Bonaldo M. F., Jelene P., Su L., Lawton L., and Efstratiadis A. (1994) Construction and characterization of a normalized cDNA library. Proc.Natl. Acad. Sci. USA 91, 9228–9232.

    Article  PubMed  CAS  Google Scholar 

  53. Wolfsberg T. G. and Landsman D. (1997) A comparison of expressed sequence tags (ESTs) to human genomic sequences. Nucleic Acids Res. 25, 1626–1632.

    Article  PubMed  CAS  Google Scholar 

  54. Pendás A. M., Knäuper V., Puente X. S., Llano E., Mattei M. G., Apte S., Murphy G. and López-Otín C. (1997) Identification and characterization of a novel matrix metalloproteinase with unique structural characteristics, chromosomal location and tissue distribution. J. Biol. Chem. 272: 4281–4286.

    Article  PubMed  Google Scholar 

  55. Liu Y. E., Wang M., Greene J., Su J., Ullrich S., Li H., Sheng S., Alexander P., Sang Q. A., and Shi Y. E. (1997) Preparation and characterization of recombinant tissue inhibitor of metalloproteinase 4 (TIMP-4). J. Biol. Chem. 272, 20,479–20,483.

    Article  PubMed  CAS  Google Scholar 

  56. Guruajan R. Grenet J., Lahti J. M., and Kidd V. J. (1998) Isolation and characterization of two novel metalloproteinase genes linked to Cdc2L locus on human chromosome 1p36.3. Genomics 52, 101–106.

    Article  Google Scholar 

  57. Velasco G., Pendas A. M., Fueyo A., Knauper V., Murphy G., and López-Otin C. (1999) Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J. Biol. Chem. 274, 4570–4576.

    Article  PubMed  CAS  Google Scholar 

  58. Llano F., Pendás A. M., Freije J. P., Nakano A., Knauper V., Murphy G., and López-Otin C. (1999) Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase A overexpressed in brain tumors. Cancer Res. 59, 2570–2576.

    PubMed  CAS  Google Scholar 

  59. Velasco G., Cal S., Merlos-Suarez A., Ferrando A. A., Alvarez S., Nakano A., Arribas J., and López-Otin C. (2000) Humana MT6-MMP identification progelatinase A activation, and expression in brain tumors. Cancer Res. 60, 877–882.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Velasco, G., López-Otín, C. (2001). Strategies for Cloning New MMPs and TIMPs. In: Clark, I.M. (eds) Matrix Metalloproteinase Protocols. Methods in Molecular Biology™, vol 151. Humana Press. https://doi.org/10.1385/1-59259-046-2:025

Download citation

  • DOI: https://doi.org/10.1385/1-59259-046-2:025

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-733-5

  • Online ISBN: 978-1-59259-046-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics