Skip to main content

Use of Pichia pastoris as a Model Eukaryotic System

Peroxisome Biogenesis

  • Protocol
Pichia Protocols

Abstract

Many subcellular processes present in multicellular eukaryotes have been shown to reside in yeast as well. The ease with which yeasts are genetically manipulated and analyzed by biochemical and ultrastructural techniques has greatly contributed to the present knowledge of these processes. In particular, the biogenesis, maintenance, and functions of the different subcellular organelles have been intensively studied in yeast. Saccharomyces cerevisiae has been the yeast of choice when the organelles under study are constitutively present in the cell, such as mitochondria, nucleus, Golgi, and the endoplasmic reticulum. In contrast, peroxisome biogenesis is studied in a variety of yeast species, mainly because the abundance of this organelle is highly inducible by external factors. Several nonconventional yeast species show a much more pronounced peroxisome proliferation than does S. cerevisiae (16).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Veenhuis, M. and Harder, W. (1989) Occurrence, proliferation and metabolic function of yeast microbodies. Yeast 5, 517–524.

    Google Scholar 

  2. Veenhuis, M. and Harder, W. (1991) Microbodies, in The Yeasts, vol. 4, 2nd ed. (Rose, A. H. and Harrison, J. S., eds), Academic, London, UK, pp. 601–653.

    Google Scholar 

  3. Gould, S. J., McCollum, D., Spong, A. P., Heyman, J. A., and Subramani, S. (1992) Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly. Yeast 8, 613–628.

    Article  CAS  Google Scholar 

  4. Liu, H., Tan, X., Veenhuis, M., McCollum, D., and Cregg, J. M. (1992) An efficient screen for peroxisome-deficient mutants of Pichia pastoris. J. Bacteriol. 174, 4943–4951.

    Article  CAS  Google Scholar 

  5. Veenhuis, M., Mateblowski, M., Kunau, W., and Harder, W. (1987) Proliferation of microbodies in Saccharomyces cerevisiae. Yeast 3, 77–84.

    Article  CAS  Google Scholar 

  6. Veenhuis, M. (1992) Peroxisome biogenesis and function in Hansenula polymorpha. Cell. Biochem. Funct. 10, 175–84.

    Article  CAS  Google Scholar 

  7. Fukui, S. and Tanaka, A. (1979) Yeast peroxisomes. Trends Biochem. Sci. 4, 246–249.

    Article  CAS  Google Scholar 

  8. Couderc, R. and Barratti, J. (1980) Oxidation of methanol by the yeast Pichia pastoris. Purification and properties of alcohol oxidase. Agric. Biol. Chem. 44, 2279–2289.

    CAS  Google Scholar 

  9. Rachubinski, R. A. and Subramani, S. (1995) How proteins penetrate peroxisomes. Cell 83, 525–528.

    Article  CAS  Google Scholar 

  10. Purdue, P. E. and Lazarow, P. B. (1994) Peroxisomal biogenesis: multiple pathways of protein import. J. Biol. Chem. 269, 30,065–30,068.

    Article  CAS  Google Scholar 

  11. Braverman, N., Dodt, G., Gould, S. J., and Valle, D. (1995) Disorders of peroxisome biogenesis. Hum. Mol. Genet. 4, 1791–1798.

    Article  CAS  Google Scholar 

  12. Subramani, S. (1993) Protein import into peroxisomes and biogenesis of the organelle. Ann. Rev. Cell Biol. 9, 445–478.

    Article  CAS  Google Scholar 

  13. Van den Bosch, H., Schutgens, R. B. H., Wanders, R. J. A., and Tager, J. M. (1992) Biochemistry of peroxisomes. Ann. Rev. Biochem. 61, 157–197.

    Article  Google Scholar 

  14. De Duve, C. and Baudhuin, P. (1966) Peroxisomes (microbodies and related particles). Physiol. Rev. 46, 323–357.

    Article  Google Scholar 

  15. Opperdoes, F. R. and Borst, P. (1977) Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett. 80, 360–364.

    Article  CAS  Google Scholar 

  16. Breidenbach, R. W. and Beevers, H. (1967) Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem. Biophys. Res. Commun. 27, 462–469.

    Article  CAS  Google Scholar 

  17. Marvin-Sikkema, F. D., Kraak, M. N., Veenhuis, M., Gottschal, J. C., and Prins, R. A. (1993) The hydrogenosomal enzyme hydrogenase from the anaerobic fungus Neocallimastix sp. L2 is recognized by antibodies, directed against the C-terminal microbody protein targeting signal SKL. Eur. J. Cell Biol. 61, 86–91.

    CAS  Google Scholar 

  18. Wiemer, E. A. and Subramani, S. (1994) Protein import deficiencies in human peroxisomal disorders. Mol. Genet. Med. 4, 119–152.

    Article  CAS  Google Scholar 

  19. Erdmann, R., Veenhuis, M., Mertens, D., and Kunau, W.-H. (1989) Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 86, 5419–5423.

    Article  CAS  Google Scholar 

  20. Cregg, J. M., Van der Klei, I. J., Sulter, G. J., Veenhuis, M., and Harder, W. (1990) Peroxisome-deficient mutants of Hansenula polymorpha. Yeast 6, 87–97.

    Article  CAS  Google Scholar 

  21. Nuttley, W. M., Brade, A. M., Gaillardin, C., Eitzen, G. A., Glover, J. R., Aitchison, J. D., and Rachubinski, R. A. (1993) Rapid identification and characterization of peroxisomal assembly mutants in Yarrowia lipolytica. Yeast 9, 507–517.

    Article  CAS  Google Scholar 

  22. Van der Leij, I., Van der Berg, M., Boot, R., Franse, M. M., Distel, B., and Tabak, H. F. (1992) Isolation of peroxisome assembly mutants from Saccharomyces cerevisiae with different morphologies using a novel positive selection procedure. J. Cell Biol. 119, 153–162.

    Article  Google Scholar 

  23. Elgersma, Y., Van den Berg, M., Tabak, H. F., and Distel, B. (1993) An efficient positive selection procedure for the isolation of peroxisomal import and peroxisome assembly mutants of Saccharomyces cerevisiae. Genetics 135, 731–740.

    Article  CAS  Google Scholar 

  24. Zhang, J. W., Han, Y., and Lazarow, P. B. (1993) Novel peroxisome clustering mutants and peroxisome biogenesis mutants of Saccharomyces cerevisiae. J. Cell Biol. 123, 1133–1147.

    Article  CAS  Google Scholar 

  25. Distel, B., Erdmann, R., Gould, S. J., Blobel, G., Crane, D. I., Cregg, J. M., Dodt, G., Fujiki, Y., Goodman, J. M., Just, W. W., Kiel, J. A. K. W., Kunau, W.-H., Lazarow, P. B., Mannaerts, G. P., Moser, H. W., Osumi, T., Rachubinski, R. A., Roscher, A., Subramani, S., Tabak, H. F., Tsukamoto, T., Valle, D., Van der Klei, I. J., Van Veldhoven, P. P., and Veenhuis, M. (1996) A unified nomenclature for peroxisome biogenesis factors. J. Cell Biol. 135, 1–3.

    Article  CAS  Google Scholar 

  26. Roa, M. and Blobel, G. (1983) Biosynthesis of peroxisomal enzymes in the methylotrophic yeast Hansenula polymorpha. Proc. Natl. Acad. Sci. USA 80, 6872–6876.

    Article  CAS  Google Scholar 

  27. Goodman, J. M., Scott, C. W., Donahue, P. N., and Atherton, J. P. (1984) Alcohol oxidase assembles post-translationally into the peroxisome of Candida boidinii. J. Biol. Chem. 259, 8485–8493.

    Article  CAS  Google Scholar 

  28. Fujiki, Y., Rachubinski, R. A., Zentella, D. A., and Lazarow, P. B. (1986) Induction, identification, and cell-free translation of mRNAs coding for peroxisomal proteins in Candida tropicalis. J. Biol. Chem. 261, 15,787–15,793.

    Article  CAS  Google Scholar 

  29. de Wet, J. R., Wood, K. V., DeLuca, M., Helinski, D. R., and Subramani, S. (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 7, 725–737.

    Google Scholar 

  30. Keller, G., Gould, S. J., Deluca, M., and Subramani, S. (1987) Firefly luciferase is targeted to peroxisomes in mammalian cells. Proc. Natl. Acad. Sci. USA 84, 3264–3268.

    Article  CAS  Google Scholar 

  31. Gould, S. J., Keller, G. A., and Subramani, S. (1987) Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J. Cell Biol. 105, 2923–2931.

    Article  CAS  Google Scholar 

  32. Gould, S. J., Keller, G. A., Hosken, N., Wilkinson, J., and Subramani, S. (1989) A conserved tripeptide sorts proteins to peroxisomes. J. Cell Biol. 108, 1657–1664.

    Article  CAS  Google Scholar 

  33. Gould, S. J., Keller, G. A., Schneider, M., Howell, S. H., Garrard, L. J., Goodman, J. M., Distel, B., Tabak, H. F., and Subramani, S. (1990) Peroxisomal protein import is conserved between yeast, plants, insects and mammals. EMBO J. 9, 85–90.

    Article  CAS  Google Scholar 

  34. Keller, G. A., Krisans, S., Gould, S. J., Sommer, J. M., Wang, C. C., Schliebs, W., Kunau, W.-H., Brody, S., and Subramani, S. (1991) Evolutionary conservation of a microbody targeting signal that targets proteins to peroxisomes, glyoxysomes, and glycosomes. J. Cell Biol. 114, 893–904.

    Article  CAS  Google Scholar 

  35. Gould, S. J., Krisans, S., Keller, G. A., and Subramani, S. (1990) Antibodies directed against the peroxisomal targeting signal of firefly luciferase recognize multiple mammalian peroxisomal proteins. J. Cell Biol. 110, 27–34.

    Article  CAS  Google Scholar 

  36. Swinkels, B. W., Gould, S. J., Bodnar, A. G., Rachubinski, R. A., and Subramani, S. (1991) A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J. 10, 3255–3262.

    Article  CAS  Google Scholar 

  37. Osumi, T., Tsukamoto, T., Hata, S., Yokota, S., Miura, S., Fujiki, Y., Hijikata, M., Miyazawa, S., and Hashimoto, T. (1991) Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem. Biophys. Res. Commun. 181, 947–954.

    Article  CAS  Google Scholar 

  38. Glover, J. R., Andrews, D. W., Subramani, S., and Rachubinski, R. A. (1994) Mutagenesis of the amino targeting signal of Saccharomyces cerevisiae 3-ketoacyl-CoA thiolase reveals conserved amino acids required for import into peroxisomes in vivo. J. Biol. Chem. 269, 7558–7563.

    Article  CAS  Google Scholar 

  39. Tsukamoto, T., Hata, S., Yokota, S., Miura, S., Fujiki, Y., Hijikata, M., Miyazawa, S., Hashimoto, T., and Osumi, T. (1994) Characterization of the signal peptide at the amino terminus of the rat peroxisomal 3-ketoacyl-CoA thiolase precursor. J. Biol. Chem. 269, 6001–6010.

    Article  CAS  Google Scholar 

  40. Gietl, C., Faber, K. N., Van der Klei, I. J., and Veenhuis, M. (1994) Mutational analysis of the N-terminal topogenic signal of watermelon glyoxysomal malate dehydrogenase using the heterologous host Hansenula polymorpha. Proc. Natl. Acad. Sci. USA 91, 3151–3155.

    Article  CAS  Google Scholar 

  41. Motley, A., Hettema, E., Distel, B., and Tabak, H. (1994) Differential protein import deficiencies in human peroxisome assembly disorders. J. Cell Biol. 125, 755–767.

    Article  CAS  Google Scholar 

  42. Van der Klei, I. J., Faber, K. N., Keizer-Gunnink, I., Gietl, C., Harder, W., and Veenhuis, M. (1993) Watermelon glyoxysomal malate dehydrogenase is sorted to peroxisomes of the methylotrophic yeast, Hansenula polymorpha. FEBS Lett. 334, 128–132.

    Article  Google Scholar 

  43. Faber, K. N., Keizer, G. I., Pluim, D., Harder, W., Ab, G., and Veenhuis, M. (1995) The N-terminus of amine oxidase of Hansenula polymorpha contains a peroxisomal targeting signal. FEBS Lett. 357, 115–120.

    Article  CAS  Google Scholar 

  44. Small, G. M., Szabo, L. J., and Lazarow, P. B. (1988) Acyl-CoA oxidase contains two targeting sequences each of which can mediate protein import into peroxisomes. EMBO J. 7, 1167–1173.

    Article  CAS  Google Scholar 

  45. Kamiryo, Y., Sakasegawa, Y., and Tan, H. (1989) Expression and transport of Candida tropicalis peroxisomal acyl-coenzyme A oxidase in the yeast Candida maltosa. Agric. Biol. Chem. 53, 179–186.

    CAS  Google Scholar 

  46. Zhang, J. W. and Lazarow, P. B. (1996) Peb1p (Pas7p) is an intraperoxisomal receptor for the NH2-terminal, type 2, peroxisomal targeting signal of thiolase: Peb1p itself is targeted to peroxisomes by an NH2-terminal peptide. J. Cell Biol. 132, 325–334.

    Article  CAS  Google Scholar 

  47. Glover, J. R., Andrews, D. W., and Rachubinski, R. A. (1994) Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc. Natl. Acad. Sci. USA 91, 10,541–10,545.

    Article  CAS  Google Scholar 

  48. McNew, J. A. and Goodman, J. M. (1994) An oligomeric protein is imported into peroxisomes in vivo. J. Cell Biol. 127, 1245–1257.

    Article  CAS  Google Scholar 

  49. Walton, P. A., Hill, P. E., and Subramani, S. (1995) Import of stably folded proteins into peroxisomes. Mol. Biol. Cell 6, 675–683.

    Article  CAS  Google Scholar 

  50. McCammon, M. T., McNew, J. A., Willy, P. J., and Goodman, J. M. (1994) An internal region of the peroxisomal membrane protein PMP47 is essential for sorting to peroxisomes. J. Cell Biol. 124, 915–925.

    Article  CAS  Google Scholar 

  51. McNew, J. A. and Goodman, J. M. (1996) The targeting and assembly of peroxisomal proteins: some old rules do not apply. Trends Biochem. Sci. 21, 54–58.

    Article  CAS  Google Scholar 

  52. Dyer J. M., McNew, J. A., and Goodman, J. M. (1996) The sorting sequence of the peroxisomal integral membrane protein PMP47 is contained within a short hydrophilic loop. J. Cell Biol. 133, 269–280.

    Article  CAS  Google Scholar 

  53. Wiemer, E. A. C., Lüers, G., Faber, K. N., Wenzel, T., Veenhuis, M., and Subramani, S. (1996) Isolation and characterization of Pas2p, a peroxisomal membrane protein essential for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. J. Biol. Chem. 271, 18,973–18,980.

    Article  CAS  Google Scholar 

  54. Höhfeld, J., Veenhuis, M., and Kunau, W.-H. (1991) PAS3, a Saccharomyces cerevisiae gene encoding a peroxisomal integral membrane protein essential for peroxisome biogenesis. J. Cell Biol. 114, 1167–1178.

    Article  Google Scholar 

  55. Baerends, R. J. S., Rasmussen, S. W., Hilbrands, R. E., Van der Heide, M., Faber, K. N., Reuvekamp, P. T. W., Kiel, J. A. K. W., Cregg, J. M., Van der Klei, I. J., and Veenhuis, M. (1996) The Hansenula polymorpha PER9 gene encodes a peroxisomal membrane protein essential for peroxisome assembly and integrity. J. Biol. Chem. 271, 8887–8894.

    Article  CAS  Google Scholar 

  56. Bodnar, A. G. and Rachubinski, R. A. (1991) Characterization of the integral membrane polypeptides of rat liver peroxisomes isolated from untreated and clofi-brate-treated rats. Biochem. Cell Biol. 69, 499–508.

    Article  CAS  Google Scholar 

  57. Waterham, H. R., Titorenko, V. I., Swaving, G. J., Harder, W., and Veenhuis, M. (1993) Peroxisomes in the methylotrophic yeast Hansenula polymorpha do not necessarily derive from pre-existing organelles. EMBO J. 12, 4785–4794.

    Article  CAS  Google Scholar 

  58. Heyman, J. A., Monosov, E., and Subramani, S. (1994) Role of the PAS1 gene of Pichia pastoris in peroxisome biogenesis. J. Cell Biol. 127, 1259–1273.

    Article  CAS  Google Scholar 

  59. Waterham, H. R., De Vries, Y., Russell, K. A., Xie, W., Veenhuis, M., and Cregg, J. M. (1996) The Pichia pastoris PER6 gene product is a peroxisomal integral membrane protein essential for peroxisome biogenesis and has sequence similarity to the Zellweger syndrome protein PAF-1. Mol. Cell Biol. 16, 2527–2536.

    Article  CAS  Google Scholar 

  60. Crane, D. I., Kalish, J. E., and Gould, S. J. (1994) The Pichia pastoris PAS4 gene encodes a ubiquitin-conjugating enzyme required for peroxisome assembly. J. Biol. Chem. 269, 21,835–21,844.

    Article  CAS  Google Scholar 

  61. McCollum, D., Monosov, E., and Subramani, S. (1993) The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells—the PAS8 protein binds to the COOH-terminal tripeptide peroxisomal targeting signal, and is a member of the TPR protein family. J. Cell Biol. 121, 761–774.

    Article  CAS  Google Scholar 

  62. Spong, A. P. and Subramani, S. (1993) Cloning and characterization of PAS5: a gene required for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. J. Cell Biol. 123, 535–548.

    Article  CAS  Google Scholar 

  63. Liu, H., Tan, X., Russell, K. A., Veenhuis, M., and Cregg, J. M. (1995) PER3, a gene required for peroxisome biogenesis in Pichia pastoris, encodes a peroxisomal membrane protein involved in protein import. J. Biol. Chem. 270, 10,940–10,951.

    Article  CAS  Google Scholar 

  64. Kalish, J. E., Theda, C., Morrell, J. C., Berg, J. M., and Gould, S. J. (1995) Formation of the peroxisome lumen is abolished by loss of Pichia pastoris Pas7p, a zinc-binding integral membrane protein of the peroxisome. Mol. Cell Biol. 15, 6406–6419.

    Article  CAS  Google Scholar 

  65. Kalish, J. E., Keller, G.-A., Morrell, J. C., Mihalik, S. J., Smith, B., Cregg, J. M., and Gould, S. J. (1996) Characterizaion of a novel component of the peroxisomal protein import apparatus using fluorescent peroxisomal proteins. EMBO J. 15, 3275–3285.

    Article  CAS  Google Scholar 

  66. Gould, S. J., Kalish, J. E., Morrell, J. C., Bjorkman, J., Urquhart, A. J., and Crane, D. I. (1996) Pex13p is an SH3 protein of the peroxisomal membrane and a docking factor for the predominantly cytosolic PTS1 receptor. J. Cell Biol. 135, 85–95.

    Article  CAS  Google Scholar 

  67. Wilson, D. W., Wilcox, C. A., Flynn, G. C., Chen, E., Kuang, W. J., Henzel, W. J., Block, M. R., Ullrich, A., and Rothman, J. E. (1989) A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 339, 355–359.

    Article  CAS  Google Scholar 

  68. Rothman, J. E. (1994) Mechanisms of intracellular protein transport. Nature 372, 55–63.

    Article  CAS  Google Scholar 

  69. Eakle, K. A., Bernstein, M., and Emr, S. D. (1988) Characterization of a component of the yeast secretion machinery: identification of the SEC18 gene product. Mol. Cell. Biol. 8, 4098–4109.

    CAS  Google Scholar 

  70. Terlecky, S. R., Nuttley, W. M., McCollum, D., Sock, E., and Subramani, S. (1995) The Pichia pastoris peroxisomal protein PAS8p is the receptor for the C-terminal tripeptide peroxisomal targeting signal. EMBO J. 14, 3627–3634.

    Article  CAS  Google Scholar 

  71. Kiebler, M., Becker, K., Pfanner, N., and Neupert, W. (1993) Mitochondrial protein import: specific recognition and membrane translocation of preproteins. J. Membr. Biol. 135, 191–207.

    Article  CAS  Google Scholar 

  72. Lithgow, T., Glick, B. S., and Schatz, G. (1995) The protein import receptor of mitochondria. Trends Biochem. Sci. 20, 98–101.

    Article  CAS  Google Scholar 

  73. Van der Leij, I., Franse, M. M., Elgersma, Y., Distel, B., and Tabak, H. F. (1993) PAS10 is a tetratricopeptide-repeat protein that is essential for the import of most matrix proteins into peroxisomes of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90, 11,782–11,786.

    Article  Google Scholar 

  74. Van der Klei, I. J., Hilbrands, R. E., Swaving, G. J., Waterham, H. R., Vrieling, E. G., Titorenko, V. I., Cregg, J. M., Harder, W., and Veenhuis, M. (1995) The Hansenula polymorpha PER3 gene is essential for the import of PTS1 proteins into the peroxisomal matrix. J. Biol. Chem. 270, 17,229–17,236.

    Article  Google Scholar 

  75. Nuttley, W. M., Szilard, R. K., Smith, J. J., Veenhuis, M., and Rachubinski, R. A. (1995) The PAH2 gene is required for peroxisome assembly in the methylotrophic yeast Hansenula polymorpha and encodes a member of the tetratricopeptide repeat family of proteins. Gene 160, 33–39.

    Article  CAS  Google Scholar 

  76. Szilard, R. K., Titorenko, V. I., Veenhuis, M., and Rachubinski, R. A. (1995) Pay32p of the yeast Yarrowia lipolytica is an intraperoxisomal component of the matrix protein translocation machinery. J. Cell Biol. 131, 1453–1469.

    Article  CAS  Google Scholar 

  77. Marzioch, M., Erdmann, R., Veenhuis, M., and Kunau, W. H. (1994) PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes. EMBO J. 13, 4908–4918.

    Article  CAS  Google Scholar 

  78. Zhang, J. W. and Lazarow, P. B. (1995) PEB1 (PAS7) in Saccharomyces cerevisiae encodes a hydrophilic, intra-peroxisomal protein that is a member of the WD repeat family and is essential for the import of thiolase into peroxisomes. J. Cell Biol. 129, 65–80.

    Article  CAS  Google Scholar 

  79. Rehling P., Marzioch, M., Niesen, F., Wittke, E., Veenhuis, M., and Kunau, W.-H. (1996) The import receptor for the peroxisomal signal 2 (PTS2) in Saccharomyces cerevisiae is encoded by the PAS7 gene. EMBO J. 15, 2901–2913.

    Article  CAS  Google Scholar 

  80. Dodt, G., Braverman, N., Wong, C., Moser, A., Moser, H. W., Watkins, P., Valle, D., and Gould, S. J. (1995) Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nature Genet. 9, 115–125.

    Article  CAS  Google Scholar 

  81. Fransen, M., Brees, C., Baumgart, E., Vanhooren, J. C. T., Baes, M., Mannaerts, G. P., and Van Veldhoven, P. P. (1995) Identification and characterization of the putative human peroxisomal C-terminal targeting signal import receptor. J. Biol. Chem. 270, 7731–7736.

    Article  CAS  Google Scholar 

  82. Wiemer, E. A. C., Nuttley, W. M., Bertolaet, B. L., Li, X., Francke, U., Wheelock, M. J., Anne, U. K., Johnson, K. R., and Subramani, S. (1995) Human peroxisomal targeting signal-1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. J. Cell Biol. 130, 51–65.

    Article  CAS  Google Scholar 

  83. Tsukamoto, T., Miura, S., and Fujiki, Y. (1991) Restoration by a 35K membrane protein of peroxisome assembly in a peroxisome-deficient mammalian cell mutant. Nature 350, 77–81.

    Article  CAS  Google Scholar 

  84. Yahraus, T., Braverman, N., Dod, G., Kalish, J. E., Morrell, J. C., Moser, H. W., Valle, D., and Gould, S. J. (1996) The peroxisome biogenesis disorder group 4 gene, PXAAA1, encodes a cytoplasmic ATPase required for stability of the PTS1 receptor. EMBO J. 15, 2914–2923.

    Article  CAS  Google Scholar 

  85. Erdmann, R., Wiebel, F. F., Flessau, A., Rytka, J., Beyer, A., Frohlich, K. U., and Kunau, W.-H. (1991) PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell 64, 499–510.

    Article  CAS  Google Scholar 

  86. Voorn-Brouwer, T., Van der Leij, I., Hemrika, W., Distel, B., and Tabak, H. F. (1993) Sequence of the PAS8 gene, the product of which is essential for biogenesis of peroxisomes in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1216, 325–328.

    Article  CAS  Google Scholar 

  87. Nuttley, W. M., Brade, A. M., Eitzen, G. A., Veenhuis, M., Aitchison, J. D., Szilard, R. K., Glover, J. D., and Rachubinski, R. R. (1994) PAY4, a gene required for peroxisome assembly in the yeast Yarrowia lipolytica, encodes a novel member of a putative ATPase. J. Biol. Chem. 269, 556–566.

    Article  CAS  Google Scholar 

  88. Tsukamoto, T., Miura, S., Nakai, T., Yokota, S., Shimozawa, N., Suzuki, Y., Orii, T., Fujiki, Y., Sakai, F., and Bogaki, A. (1995) Peroxisome assembly factor-2, a putative ATPase cloned by functional complementation on a peroxisome-deficient mammalian cell mutant. Nature Genet. 11, 395–401.

    Article  CAS  Google Scholar 

  89. Subramani, S. (1997) PEX genes on the rise. Nature Genet. 15, 331–333.

    Article  CAS  Google Scholar 

  90. Inouye, S. and Tsuji, F. I. (1994) Evidence for redox forms of the Aequorea green fluorescent protein. FEBS Lett. 351, 211–214.

    Article  CAS  Google Scholar 

  91. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  CAS  Google Scholar 

  92. Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., and Tsien, R. Y. (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20, 448–455.

    Article  CAS  Google Scholar 

  93. Crameri, A., Whitehorn, E. A., Tate, E., and Stemmer, W. P. C. (1996) Improved Green Fluorescent Protein by molecular evolution using DNA shuffling. Nature Biotechnol. 14, 315–319.

    Article  CAS  Google Scholar 

  94. Heim, R., Prasher, D. C., and Tsien, R. Y. (1994) Wavelength mutations and post-transcriptional autooxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12,501–12,504.

    Article  CAS  Google Scholar 

  95. Delagrave, S., Hawtin, R. E., Silva, C. M., Yang, M. M., and Youvan, D. C. (1995) Red-shifted excitation mutants of the green fluorescent protein. Bio/Technology 13, 151–154.

    CAS  Google Scholar 

  96. Monosov, E. Z., Wenzel, T. J., Lüers, G. H., Heyman, J. A., and Subramani, S. (1996) Labeling of peroxisomes with green fluorescent protein in living P. pastoris cells. J. Histochem. Cytochem. 44, 581–589.

    Article  CAS  Google Scholar 

  97. Faber, K. N., Haima, P., Gietl, C., Harder, W., Ab, G., and Veenhuis, M. (1994) The methylotrophic yeast Hansenula polymorpha contains an inducible import pathway for peroxisomal matrix proteins with an N-terminal targeting signal (PTS2 proteins). Proc. Natl. Acad. Sci. USA 91, 12,985–12,989.

    Article  CAS  Google Scholar 

  98. Wiemer, E. A. C., Wenzel, T. J., Deerinck, T. J., Ellisman, M. H., and Subramani, S. (1997) Visualization of the peroxisomal compartment in living mammalian cells: dynamic behavior and associationwith microtubules. J. Cell Biol. 136, 71–80.

    Article  CAS  Google Scholar 

  99. Harlow, E. and Lane, D. (1988) Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N Y.

    Google Scholar 

  100. Muhlrad, D., Hunter, R., and Parker R. (1992) A rapid method for localized mutagenesis of yeast genes Yeast 8, 79–82.

    Article  CAS  Google Scholar 

  101. Reynolds, E. S. (1963) The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J. Cell Biol. 17, 208–212.

    Article  CAS  Google Scholar 

  102. Storrie, B. and Madden, E. A. (1990) Isolation of subcellular organelles, in Guide to Protein Purification (Deutscher, M. P., ed.), Academic, San Diego, CA, pp. 203–225.

    Chapter  Google Scholar 

  103. Elgersma, Y., Elgersma-Hoorsma, M., Wenzel, T., McCaffrey, M. J., Farquhar, M. G., and Subramani, S. (1998) A mobile receptor for peroximal protein import in Pichia pastoris. J. Cell Biol., in press.

    Google Scholar 

  104. Faber, K. N., Heyman, J. A., and Subramani, S. (1998) The AAA-family peroxins, PpPex1p and PpPex6p, interact with each other in an ATP-dependent manner and are associated with different subcellular membranous structures distinct from peroxisomes. Mol. Cell Biol., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Faber, K.N. et al. (1998). Use of Pichia pastoris as a Model Eukaryotic System. In: Higgins, D.R., Cregg, J.M. (eds) Pichia Protocols. Methods in Molecular Biology, vol 103. Humana, Totowa, NJ. https://doi.org/10.1385/0-89603-421-6:121

Download citation

  • DOI: https://doi.org/10.1385/0-89603-421-6:121

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-0-89603-421-1

  • Online ISBN: 978-1-59259-578-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics