Skip to main content

Transformation of Lithium-Treated Yeast Cells and the Selection of Auxotrophic and Dominant Markers

  • Protocol
Yeast Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 53))

Abstract

Transformation of yeast cells can be achieved using lithium-treated or spheroplasted cells. Spheroplast transformation (1,2) is a high efficiency method yielding up to 104–105 transformants per µg of DNA (but more typically, in practice approximately 103 per µg). The preparation of spheroplasts, however, is somewhat laborious and tedious. The transformed spheroplasts require plating in a soft agar overlay to allow cell wall regeneration; additionally, the generation of undesired polyploids through protoplast fusion is also a possibility. In contrast, the lithium acetate method is relatively quick and simple to perform. It has the advantage that the cells remain intact, and so do not fuse, and can be plated directly onto the surface of selective agar plates. The transformation efficiency generally is similar to the spheroplast method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beggs, J. D. (1978) Transformation of yeast by a replicating plasmid. Nature 275, 104–109.

    Article  PubMed  CAS  Google Scholar 

  2. Hinnen, A., Hicks, J. B., and Fink, G. R. (1978) Transformation of yeast. Proc. Natl. Acad. Sci. USA 75, 1929–1933.

    Article  PubMed  CAS  Google Scholar 

  3. Hitzeman, R. A., Clarke, L., and Carbon, J. (1980) Isolation and characterization of the yeast 3-phosphoglycerate kinase gene (PGK) by an immunological screening technique. J. Biol. Chem. 255, 12073–12080.

    PubMed  CAS  Google Scholar 

  4. Struhl, K. (1982) Regulatory sites for HIS3 gene expression in yeast. Nature 300, 284–287.

    Article  CAS  Google Scholar 

  5. Struhl, K., Stinchcomb, D. T., Scherer, S., and Davis, R. W. (1979) High-frequency transformation of yeast: Autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. USA 76, 1035–1039.

    Article  PubMed  CAS  Google Scholar 

  6. Hadfield, C., Jordan, B. E., Mount, R. C., Pretorius, G. H. J., and Burak, E. (1990) G418-resistance as a dominant marker and reporter for gene expression in Saccharomyces cerevisiae. Curr. Genet. 18, 303–313.

    Article  PubMed  CAS  Google Scholar 

  7. Webster, T. D. and Dickson, R. C. (1983) Direct selection of Saccharomyces cerevisiae resistant to the antibiotic G418 following transformation with a DNA vector carrying the kanamycin resistance gene of Tn903. Gene 26, 243–252.

    Article  PubMed  CAS  Google Scholar 

  8. Jimenez, A. and Davies, J. (1980) Expression of a transposable antibiotic resistance element in Saccharomyces. Nature 287, 869–871.

    Article  PubMed  CAS  Google Scholar 

  9. Hadfield, C., Cashmore, A. M., and Meacock, P. A. (1986) An efficient chloramphenicol-resistance marker for Saccharomyces cerevisiae and Eschericha coli. Gene 45, 149–158.

    Article  PubMed  CAS  Google Scholar 

  10. Hadfield, C., Cashmore, A. M., and Meacock, P. A. (1987) Sequence and expression characteristics of a shuttle chloramphenicol-resistance marker for Saccharomyces cerevisiae and Escherichia coli. Gene 52, 59–79.

    Article  PubMed  CAS  Google Scholar 

  11. Kaster, K. R., Burgett, S. G., and Ingolia, T. D. (1984) Hygromycin B resistance as dominant selectable marker in yeast. Curr. Genet. 8, 353–358.

    Article  CAS  Google Scholar 

  12. Gritz, L. and Davies, J. (1983) Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Eschericha coli and Saccharomyces cerevisiae. Gene 25, 179–188.

    Article  PubMed  CAS  Google Scholar 

  13. Zhu, J., Contreras, R., Gheysen, D., Erst, J., and Fiers, W. (1985) A system for dominant transformation and plasmid amplification in Saccharomyces cerevisiae. Biotechnology 3, 451–456.

    Article  CAS  Google Scholar 

  14. Casey, G. P., Xiao, W., and Rank, G. H. (1988) A convenient dominant selection marker for gene transfer in industrial strains of Saccharomyces yeast: SMRI encoded resistance to the herbicide sulfometuron methyl. J. Inst. Brew. 94, 93–97.

    CAS  Google Scholar 

  15. Henderson, R. C. A., Cox, B. S., and Tubb, R. (1978) The transformation of brewing yeast with a plasmid containing the gene for copper resistance. Curr. Genet. 9, 133–138.

    Article  Google Scholar 

  16. Fogel, S. and Welch, J. (1982) Tandem gene amplification mediates copper resistance in yeast. Proc. Natl. Acad. Sci. USA 79, 5342–5346.

    Article  PubMed  CAS  Google Scholar 

  17. Ito, H., Fukuda, Y., Murata, K., and Kimra, A. (1983) Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163–168.

    PubMed  CAS  Google Scholar 

  18. Faber, K. N., Haima, P., Harder, W., Veenhuis, M. and Ab, G. (1994) Highly efficient electrotransformation of the yeast Hansenula polymorpha. Curr. Genet. 25, 305–310.

    Article  PubMed  CAS  Google Scholar 

  19. Geitz, D., St. Jean, A., Woods, R. A., and Schiestl, R. H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 6, 1425.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Mount, R.C., Jordan, B.E., Hadfield, C. (1996). Transformation of Lithium-Treated Yeast Cells and the Selection of Auxotrophic and Dominant Markers. In: Evans, I.H. (eds) Yeast Protocols. Methods in Molecular Biology™, vol 53. Humana Press. https://doi.org/10.1385/0-89603-319-8:139

Download citation

  • DOI: https://doi.org/10.1385/0-89603-319-8:139

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-319-1

  • Online ISBN: 978-1-59259-540-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics