Skip to main content

Principle of Digital Imaging Microscopy

  • Protocol
In Situ Hybridization Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 33))

  • 720 Accesses

Abstract

A challenging problem of in situ hybridization is to visualize then localize genes or specifie sequences within the interphase nuclei or on chromosomes, as we now have at our disposai a large panel of probes. In addition, methods for probe labeling are continuously being improved to allow increased efficiency of in situ hybridization. A considerable advance was recently achieved in chromosome and chromatin mapping by taking advantage of chromatin decondensation (1, 2) and multicolor fluorescence labeling (36). Sequences separated by less than 10 kb could be resolved in that way (1, 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lawrence, J., Carter, K. C, and Gerdes, M J (1992) Extendmg the capabilities of interphase chromatin mapping Nat. Gene. 2, 171,172

    Article  CAS  Google Scholar 

  2. Heng, H. H, Squire, J., and Tsui, L.-C. (1992) High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc. Natl. Acad. Sci USA 89, 9509–9513

    Article  PubMed  CAS  Google Scholar 

  3. Trask, B., Massa, M, Kenwrick, S., and Ditschier, J. (1991) Mapping of human chromosome Xq28 by two-color fluorescence in situ hybridization of DNA sequences to interphase cell nuclei Am. J. Hum. Genet. 48, 1–15.

    PubMed  CAS  Google Scholar 

  4. Lichter,P, Tang,-J, Call, Hermanson, G., Evans, G A, Housman, D, and Ward, D (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones 247, 64–69.

    Article  PubMed  CAS  Google Scholar 

  5. Lawrence, J., Singer, R H, and McNeil, J A. (1992) Interphase and metaphase resolution of different distances within the human Dystrophin gene Science 249, 928–932.

    Article  Google Scholar 

  6. Nederlof, M, van der Flier, S, Wiegant, J, Raap, A K., Tanke, H J., Ploem, J S, and van der Ploeg, M (1990) Multiple fluorescence in situ hybridization Cytometry 11, 126–131.

    Article  PubMed  CAS  Google Scholar 

  7. Inoué, S (1986) Video Microscopy, Plenum, New York

    Google Scholar 

  8. Diguiseppi, J, Inman, R T., Ishihara, A, Jacobson, K. A., and Herman, B (1985) Applications of digitized fluorescence microscopy to problem in cell biology Biotechniques 3, 394–403.

    Google Scholar 

  9. Waggoner, A., De Biasio, R, Conrad, P, Bright, G R., Ernst, L, Ryan, K, Nederlof, M., and Taylor, D. (1989) Multiple spectral parameter imaging, in Methods in Cell Biology, vol 30 (Wang Y.-L. and Taylor, D. L. eds), Academic, New York, pp 449–478.

    Google Scholar 

  10. Taylor, D L. and Salmon, E. D. (1989) Basic fluorescence microscopy, in Methods in Cell Biology, vol 29 (Wang, Y-L. and Taylor D L., eds.), Academic, New York, pp 207–237

    Google Scholar 

  11. Bright, G R and Taylor, D L (1986) Imaging atlow light level in flourescence microscopy, in Application of Fluorescence in the Biomedical Sciences (Taylor, D L., Waggoner, A. S., Murphy, R F., Lanni, F, and Bilge, R. R., eds.), Liss, New York, pp. 257–288

    Google Scholar 

  12. Ploem, J. S (1987) Laser scanning fluorescence microscopy Appl.Opt 26, 3226–3231

    Article  PubMed  CAS  Google Scholar 

  13. Jovin, T M., Arndt-Jovin, D J, Marroitt, G, Clegg, R. M, Robert-Nicoud, M, and Schormann, T (1990) Distance, wavelength and time, the versatile 3rd dimension in light emission microscopy, in Optical Microscopy for Biology (Herman, B and Jacobson, K., eds), Wiley-Liss, New York, pp 575–602

    Google Scholar 

  14. Tsay, T.-T., Inman, R., Wray, B., Herman, B, and Jacobson, K. (1990) Characterization of low-light-level cameras for digitized video microscopy. J. Microscop 160, 141–159.

    CAS  Google Scholar 

  15. Wick, R. A. (1987) Quantum-limited imaging using microchannel plate technology Appl Opt. 26, 3210–3218

    Article  PubMed  CAS  Google Scholar 

  16. Hayakawa, T., Kinoshita, K, Miyaki, S, Fujiwake, H, and Ohsaka, S (1986) Ultra-low-light level camera for photon counting imaging. Photochem Photobiol. 43, 95–97

    Article  CAS  Google Scholar 

  17. Hiraoka, Y., Sedat, J W, and Agard, D A (1987) The use of a charge-coupled device for quantitative optical microscopy of biological structure. Science 238, 36–41

    Article  PubMed  CAS  Google Scholar 

  18. Aikens, R S., Agard, D A, and Sedat, J W (1989) Solid-state imagers for microscopy, in Methods in Cell Biology, vol 29 (Wang, Y-L and Taylor D L, eds), Academic, New York, pp. 291–313.

    Google Scholar 

  19. Castleman, K. R (1987) Spatial and photometric resolution and calibration requirements for cell image analysis instruments. Appl Opt 26, 3338–3342

    Article  PubMed  CAS  Google Scholar 

  20. Inoué, S. (1989) Imaging of unresolved objects, superresolution, and précision of distance measurement with video microscopy, in Methods in Cell Biology, vol. 30 (Wang, Y-L and Taylor D L., eds), Academic, New York, pp. 85–112

    Google Scholar 

  21. Brakenhoff, G J., Blom, P., and Barends, P (1979) Confocal scanning light microscopy with high aperture immersion lenses. J Microscop 117, 219–232

    Google Scholar 

  22. White, J. G, Amos, W., and Fordham, M (1987) An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy J. Cell. Biol 105, 41–48

    Article  PubMed  CAS  Google Scholar 

  23. Dudgeon, D. E and Mersereau, R M (1984) Multidimentional Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  24. Agard, D. A (1984) Optical sectioning microscopy: cellular architecture in three dimension. Annu. Rev. Biophys Bioeng. 13, 191–219.

    Article  PubMed  CAS  Google Scholar 

  25. Belmont, A A., Braunfeld, M., Sedat, J. W., and Agard, D. A (1989) Large-scale chromatin structural domains within mitotic and interphase chromosomes in vivo and in vitro. Chromosoma 98, 129–143.

    Article  PubMed  CAS  Google Scholar 

  26. Mathog, D., Hochstrasser, M., Gruenbaum, Y., Saumweber, H., and Sedat, J. W. (1984) Characteristic folding pattern of polytene chomosomes in drosophila salivary gland nuclei. Nature 308, 414–421

    Article  PubMed  CAS  Google Scholar 

  27. Agard, D. A, Hiraoka, Y, Shaw, P., and Sedat, J W (1989) Fluorescence microscopy in three dimensions, in Methods in Cell Biology, vol 30 (Wang Y.-L and Taylor, D L eds), Academic, New York, pp. 353–377.

    Google Scholar 

  28. Robert-Nicoud, M, Arndt-Jovin, D. J., Schormann, T., and Jovin, T M (1989) 3D-imaging of cells and tissues using confocal laser scanning microscopy and digital processing Eur. J. Cell. iol (suppl. 25), 49–54

    Google Scholar 

  29. Agard. D A. and Sedat, J. W (1984) Three-dimensional architecture of a polytene nucleus Nature 302, 676–681.

    Article  Google Scholar 

  30. Wright, S. J., Schatten, H., Simerly, C, and Schatten, G. (1990) Three-dimensional fluorescence imaging with the tandem scanning confocal microscope, in Optical Microscopy for Biology (Herman, B. and Jacobson, K., eds.), Wiley-Liss, New York, pp. 29–43

    Google Scholar 

  31. Rykowski, M. C. (1991) Optical sectioning and three-dimensional reconstruction of diploid and polytene nuclei, in Methods in Cell Biology, vol 35. Functional Organization of the Nucleus (Hamkalo, B. A. and Elgin, S R., eds), Academic, New York, pp 253–286.

    Google Scholar 

  32. Viégas-Péquignot, E, Dutrillaux, B., Magdelénat, H., and Coppey-Moisan, M. (1989) Mapping of singleDNA sequences on human chromosomes by in situ hybridization with biotinylated probes, enhancement of detection sensitivity by intensified-fluorescence digital-imaging microscopy, Proc Natl Acad Sci USA 86, 582–586

    Article  PubMed  Google Scholar 

  33. Hiraoka, Y, Rykowski, M. C, Lefstin, J A., Agard, D. A., and Sedat, J W (1990) Three-dimensional organization of chromosomes studied by in situ hybridization and optical sectioning microscopy, Proc. SPIE Int. Soc. Opt. Eng. 1205, 11–19

    Google Scholar 

  34. Mathog, D. and Sedat, J W. (1989) The three-dimensional organization of polytene nuclei in male Drosophila melanogaster with compound xy or ring x chromosomes. Genetics 121, 293–311.

    PubMed  CAS  Google Scholar 

  35. Rykowski, M. C, Parmelee, S. J., Agard, D. A., and Sedat, J W. (1988) Precise determination of the molecular limits of a polytene chromosome band. Regulatory sequences for the notch gene are in the interband. Cell 54, 461–472

    Article  PubMed  CAS  Google Scholar 

  36. Harders, J., Luckacs, N., Robert-Nicoud, M., Jovin, T. M., and Riesner, D (1989) Imaging of viroids m nuclei from tomato leaf tissue by in situ hybridization and confocal laser scanning microscopy. EMBO J. 8, 3941–3949.

    PubMed  CAS  Google Scholar 

  37. Brakenhoff, G. J, van der Voort, H. T M, van Spousen, E A, Linnemons, W A. M, and Nanninga, N (1985) Three dimensional chromatin distribution in neuroblastoma nuclei shown by confocal laser scanning microscopy Nature 317, 748–749.

    Article  PubMed  CAS  Google Scholar 

  38. Rogers, A. W. (1979) Techniques in Autoradiography, Elsevier, New York.

    Google Scholar 

  39. Papoulis, A. (1968) Systems and Transforms with Applications in Optics, Mc Graw-Hill, New York.

    Google Scholar 

  40. Harris, J. L. (1964) Resolving power and decision J. Opt. Soc Am 54, 931–936.

    Article  Google Scholar 

  41. Jovin, T. M. and Arndt-Jovin, D. J. (1989) Luminescence digital imaging microscopy (LDIM). Annu. Rev. Biophys. Biophys. Chem. 18, 271–308.

    Article  PubMed  CAS  Google Scholar 

  42. Yanagida, T., Nakase, M., Nishiyama, K., and Oosawa, F (1984) Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58–60.

    Article  PubMed  CAS  Google Scholar 

  43. Toyoshima, Y., Krone, S, McNally, E., Niebling, K., Toyoshima, C, and Spudich, J. A. (1987) Myosin subfragment-1 is sufficient to move actin filaments in vitro Nature 328, 536–539.

    Article  PubMed  CAS  Google Scholar 

  44. Schnapp, B. J., Vale, R D., Sheetz, M. P, and Reese, T. S (1985) Single microtubules from squid axoplasm support bidirectional movement of organelles Cell 40, 455–462.

    Article  PubMed  CAS  Google Scholar 

  45. Koonce, M P and Schliwa, M (1986) Reactivation of organelle movements along the cytoskeletal framework of giant freshwater ameba. J Cell Biol 103, 605–612.

    Article  PubMed  CAS  Google Scholar 

  46. Cassimens, L., Inoué, S, and Salmon, E. D (1988) Microtubule dynamics in the chromosomal spindle fiber analysis by fluorescence and high-resolution polanzation microscopy Cell. Motil. Cytoskel. 10, 1–12

    Article  Google Scholar 

  47. Allen, R. D, Weiss, D. G, Hayden, J H, Brown, D. T, Fujiwake, H., and Simpson, M (1985) Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. J. Cell. Biol. 100, 1736–1752

    Article  PubMed  CAS  Google Scholar 

  48. Lakowicz, J R. (1983) Principles of Fluorescence Spectroscopy, Plenum, New York

    Google Scholar 

  49. Haugland, R. P. (1990) Fluorescein substitutes for microscopy and imaging, in Optical Microscopy for Biology (Herman, B. and Jacobson, K, eds.), Wiley-Liss, New York, pp 143–157.

    Google Scholar 

  50. Mujumdar, R. B., Ernst, L. A, Mujumdar, S. R, and Waggoner, A S. (1989) Cyanine dye labeling reagents containing isothiocyanate groups. Cytometry 10, 11–19

    Article  PubMed  CAS  Google Scholar 

  51. Marcus, D A (1988) High-performance optical filters for fluorescence analysis. Cell Motil. Cytoskel 10, 62–70.

    Article  CAS  Google Scholar 

  52. Inoué, S. (1990) Foundations of confocal scanned imaging in light microscopy, in The Handbook of Biological Confocal Microscopy (Pawley, J, ed), Plenum, New York, pp 1–44

    Google Scholar 

  53. Wilson, T. and Sheppard, C. J. R (1984) Theory and Practice of Scanning Optical Microscopy, Academic, New York.

    Google Scholar 

  54. Brakenhoff, G. J, van der Voort, H T. M., Oud, J. L., and Mans, A. (1990) Potentialites and limitations of confocal microscopy for the study of 3 dimensional biological structures, in Optical Microscopy for Biology (Herman, B. and Jacobson, K., eds.), Wiley-Liss, New York, pp. 19–28.

    Google Scholar 

  55. Webb, W W., Wells, K. S, Sandison, D R., and Strickler, J. (1990) Criteria for quantitative dynamical confocal fluorescence imaging, in Optical Microscopy for Biology (Herman, B. and Jacobson, K, eds), Wiley-Liss, New York, pp. 73–108

    Google Scholar 

  56. Pétran, M, Hadravsky, M., Egger, M. D, and Galambos, R. (1968) Tandem-scanning reflected light microscope, J. Opt. Soc Am 58, 661–664

    Article  Google Scholar 

  57. Oppenheim, A. V, Willsky, A S., and Young, I. T (1983) Systems and Signals, Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  58. Goodman, J. W (1968) Introduction to Fourier Optics, McGraw-Hill, New York.

    Google Scholar 

  59. Bracewell, R (1965) The Fourier Transform and Its Applications, McGraw-Hill, New York

    Google Scholar 

  60. Young, I. T. (1989) Image fidelity. characterizing the imaging transfert function, in Methods in Cell Biology, vol 30 (Wang, Y-L. and Taylor D L, eds), Academic, New York, pp. 1–45.

    Google Scholar 

  61. Castleman, K. R (1979) Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  62. Torr, M. R and Devlin, J. (1982) Intensified charge coupled devices for use as a spaceborne spectrographic image-plane detector System Appl Opt. 21, 3091–3108.

    Article  PubMed  CAS  Google Scholar 

  63. Gonzalez, R. C and Wintz, P (1977) Digital Image Processing, Addison-Wesley, Reading, MA

    Google Scholar 

  64. Wilson, T (1990) The role of the pinhole in confocal imaging Systems, in The Handbook of Biological Confocal Microscopy (Pawley, P., ed), Plenum, New York, pp. 113–126

    Google Scholar 

  65. Gibson, S. F. and Lanni, F. (1990) Measured and analytical point spread functions of the optical microscope for use in 3-D optical serial sectioning microscopy, in Optical Microscopy for Biology (Herman, B and Jacobson, K., eds), Wiley-Liss, New York, pp. 109–118.

    Google Scholar 

  66. Hiraoka, Y., Sedat, J. W, and Agard, D. A. (1990) Determination of three-dimenstonal imaging properties of a light microscope system: partial confocal behavior in epifluorescence microscopy Biophys J. 57, 325–333

    Article  PubMed  CAS  Google Scholar 

  67. Keller, H. E (1990) Objective lenses for confocal microscopy, in The Handbook of Biological Confocal Microscopy (Pawley, P., ed), Plenum, New York, pp 77–86

    Google Scholar 

  68. Gelles, J., Schnapp, B. J, and Sheetz, M. P. (1987) Tracking kinesin-driven movements with nanometer-scale precision. Nature 331, 450–453

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc.

About this protocol

Cite this protocol

Coppey-Moisan, M., Delie, J., Magdelenat, H., Coppey, J. (1994). Principle of Digital Imaging Microscopy. In: Choo, K.H.A. (eds) In Situ Hybridization Protocols. Methods in Molecular Biology™, vol 33. Humana Press. https://doi.org/10.1385/0-89603-280-9:359

Download citation

  • DOI: https://doi.org/10.1385/0-89603-280-9:359

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-280-4

  • Online ISBN: 978-1-59259-520-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics