Skip to main content
Log in

A triple entente: Virus, neurons, and CD8+ T cells maintain HSV-1 latency

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Herpes simplex virus type 1 (HSV-1) travels by retrograde transport to sensory ganglia where latency is established. Recurrent disease results from virus reactivation and anterograde transport to nerve termini. Prevention of reactivation requires a complex interplay among virus, neuron, and immune response. Study of this tripartite relationship suggests possible interaction, and even communication among these components, that direct an immune response that allows for control of virus while preserving the viability of host tissue. Exciting new evidence supports the view that CD8+ effector T cells employ both lytic granule-dependent and interferon gamma-dependent effector mechanisms in maintaining HSV-1 latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sainz B, Loutsch JM, Marquart ME, Hill JM: Stress-associated immunomodulation and herpes simples virus infections. Med Hypotheses 2001;56:348–356.

    Article  PubMed  CAS  Google Scholar 

  2. Posavad CM, Koelle DM, Shaughnessy MF, Corey L: Severe genital herpes infections in HIV-infected individuals with impaired herpes simplex virus-specific CD8+ cytotoxic T lymphocyte responses. Proc Natl Acad Sci USA 1997;94:10289–10294.

    Article  PubMed  CAS  Google Scholar 

  3. Shimeld C, Efstathiou S, Hill T: Tracking the spread of a lacZ-tagged herpes simplex virus type 1 between the eye and the nervous system of the mouse: comparison of primary and recurrent infection. J Virol 2001;75:5252–5262.

    Article  PubMed  CAS  Google Scholar 

  4. Decman V, Freeman ML, Kinchington PR, Hendricks RL: Immune control of HSV-1 latency. Viral Immunol 2005;18:466–473.

    Article  PubMed  CAS  Google Scholar 

  5. Carr DJ, Noisakran S, Halford WP, Lukacs N, Asensio V, Campbell IL: Cytokine and chemokine production in HSV-1 latently infected trigeminal ganglion cell cultures: effects of hyperthermic stress. J Neuroimmunol 1998;85:111–121.

    Article  PubMed  CAS  Google Scholar 

  6. Al-khatib K, Williams BR, Silverman RH, Halford WP, Carr DJ: The murine double-stranded RNA-dependent protein kinase PKR and the murine 2′,5′-oligoadenylate synthetase-dependent RNase L are required for IFN-beta-mediated resistance against herpes simplex virus type 1 in primary trigeminal ganglion culture. Virology 2003;313:126–135.

    Article  PubMed  CAS  Google Scholar 

  7. Sawtell NM, Poon DK, Tansky CS, Thompson RL: The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. J Virol 1998;72:5343–5350.

    PubMed  CAS  Google Scholar 

  8. Sawtell NM: The probability of in vivo reactivation of herpes simplex virus type 1 in creases with the number of latently infected neurons in the ganglia. J Virol 1998;72:6888–6892.

    PubMed  CAS  Google Scholar 

  9. Lachmann RH, Sadarangani M, Atkinson HR, Efstathiou S: An analysis of herpes simplex virus gene expression during latency establishment and reactivation. J Gen Virol 1999;80:1271–1282.

    PubMed  CAS  Google Scholar 

  10. Margolis TP, Sedarati F, Dobson AT, Feldman LT, Stevens JG: Pathways of viral gene expression during acute neuronal infection with HSV-1. Virology 1992;189:150–160.

    Article  PubMed  CAS  Google Scholar 

  11. Jackson SA, DeLuca NA: Relationship of herpes simplex virus genome configuration to productive and persistent infections. Proc Natl Acad Sci USA 2003; 100:7871–7876.

    Article  PubMed  CAS  Google Scholar 

  12. Gesser RM, Valyi-Nagy T, Fraser NW: Restricted herpes simplex virus type 1 gene expression within sensory neurons in the absence of functional B and T lymphocytes. Virology 1994;200:791–795.

    Article  PubMed  CAS  Google Scholar 

  13. Simmons A, Tscharke DC: Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: Implications for the fate of virally infected neurons. J Exp Med 1992;175:1337–1344.

    Article  PubMed  CAS  Google Scholar 

  14. Khanna KM, Bonneau RH, Kinchington PR, Hendricks RL: Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retain ed in latently infected sensory ganglia. Immunity 2003;18:593–603.

    Article  PubMed  CAS  Google Scholar 

  15. Theil D, Derfuss T, Paripovic I, et al: Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response. Am J Pathol 2003;163:2179–2184.

    PubMed  CAS  Google Scholar 

  16. Feldman LT, Ellison AR, Voytek CC, Yang L, Krause P, Margolis TP: Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc Natl Acad Sci USA 2002;99:978–983.

    Article  PubMed  CAS  Google Scholar 

  17. Liu T, Khanna KM, Chen X, Fink DJ, Hendricks RL: CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J Exp Med 2000;191:1459–1466.

    Article  PubMed  CAS  Google Scholar 

  18. Nugent CT, Wolcott RM, Chervenak R, Jennings SR: Analysis of the cytolytic T-lymphocyte response to herpes-simplex virus type-1 glycoprotein-B during primary and secondary infection. J Virol 1994;68:7644–7648.

    PubMed  CAS  Google Scholar 

  19. Cose SC, Kelly JM, Carbone FR: Characterization of a diverse primary herpes-simplex virus type-1 gB-specific cytotoxic T-cell response showing a preferential V-beta bias. J Virol 1995;69:5849–5852.

    PubMed  CAS  Google Scholar 

  20. van Lint AL, Kleinert L, Clarke SR, Stock A, Heath WR, Carbone FR: Latent infection with herpes simplex virus is associated with ongoing CD8+ T-cell stimulation by parenchymal cells within sensory ganglia. J Virol 2005;79:14843–14851.

    Article  PubMed  Google Scholar 

  21. Leopardi R, Van Sant C, Roizman B: The herpes simplex virus 1 protein kinase U(s)3 is required for protection from apoptosis induced by the virus. Proc Natl Acad Sci USA 1997;94:7891–7896.

    Article  PubMed  CAS  Google Scholar 

  22. Jerome KR, Fox R, Chen Z, Sears AE, Lee H, Corey L: Herpes simplex virus inhibits apoptosis through the action of two genes, Us5 and Us3. J Virol 1999;73: 8950–8957.

    PubMed  CAS  Google Scholar 

  23. Henderson G, Peng W, Jin L, et al: Regulation of caspase 8- and caspase 9-induced apoptosis by the herpes simplex virus type 1 latency-associated transcript. J Neurovirol 2002;8(Suppl 2):103–111.

    Article  PubMed  CAS  Google Scholar 

  24. Peng W, Henderson G, Perng GC, Nesburn AB, Wechsler SL, Jones C: The gene that encodes the herpes simplex virus type 1 latency-associated transcript influences the accumulation of transcripts (Bcl-x(L) and Bcl-x(S)) that encode apoptotic regulatory proteins. J Virol 2003;77:10714–10718.

    Article  PubMed  CAS  Google Scholar 

  25. Jerome, KR, Chen Z, Lang R, et al: HSV and glycoprotein J inhibit caspase activation and apoptosis induced by granzyme B or Fas. J Immunol 2001;167:3928–3935.

    PubMed  CAS  Google Scholar 

  26. Wojtasiak M, Jones CM, Sullivan LC, Winterhalter AC, Carbone FR, Brooks AG: Persistent expression of CD94/NKG2 receptors by virus-specific CD8T cells is initiated by TCR-mediated signals. Int Immunol 2004;16:1333–1341.

    Article  PubMed  CAS  Google Scholar 

  27. Suvas S, Azkur AK, Rouse BT: Qa-1b and CD94-NKG2a interaction regulate cytolytic activity of herpes simplex virus-specific memory CD8+ T cells in the latently infected trigeminal ganglia. J Immunol 2006; 176:1703–1711.

    PubMed  CAS  Google Scholar 

  28. Halford WP, Gebhardt BM, Carr DJ: Persistent cytokine expression in trigeminal ganglion latently infected with herpes simplex virus type 1. J Immunol 1996;157:3542–3549.

    PubMed  CAS  Google Scholar 

  29. Cantin EM, Hinton DR, Chen J, Openshaw H: Gamma interferon expression during acute and latent nervous system infection by herpes simplex virus type 1. J Virol 1995;69:4898–4905.

    PubMed  CAS  Google Scholar 

  30. Chen, SH, Garber DA, Schaffer PA, Knipe DM, Coen DM: Persistent elevated expression of cytokine transcripts in ganglia latently infected with herpes simplex virus in the absence of ganglionic replication or reactivation. Virology 2000;278:207–216.

    Article  PubMed  CAS  Google Scholar 

  31. Halford WP, Gebhardt BM, Carr DJ: Acyclovir blocks cytokine gene expression in trigeminal ganglia latently infected with herpes simplex virus type 1. Virology 1997;238:53–63.

    Article  PubMed  CAS  Google Scholar 

  32. Decman V, Kinchington PR, Harvey SA, Hendricks RL: Gamma interferon can block herpes simplex virus type 1 reactivation from latency, even in the presence of late gene expression. J Virol 2005;79:10339–10347.

    Article  PubMed  CAS  Google Scholar 

  33. Montixi, C, Langlet C, Bernard AM, et al: Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J 1998;17:5334–5348.

    Article  PubMed  CAS  Google Scholar 

  34. Sanes JR, Lichtman JW: Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 1999;22: 389–442.

    Article  PubMed  CAS  Google Scholar 

  35. Khan AA, Bose C, Yam LS, Soloski MJ, Rupp F: Physiological regulation of the immunological synapse by agrin. Science 2001;292:1681–1686.

    Article  PubMed  CAS  Google Scholar 

  36. Hokfelt T, Pernow B, Wahren J: Substance P: a pioneer amongst neuropeptides. J Int Med 2001;249:27–40.

    Article  CAS  Google Scholar 

  37. Lotz M, Vaughan JH, Carson DA: Effect of neuropeptides on production of inflammatory cytokines by human monocytes. Science 1988;241:1218–1221.

    Article  PubMed  CAS  Google Scholar 

  38. Levite, M.: Neuropeptides, by direct interaction with T cells, induce cytokine secretion and break the commitment to a distinct T helper phenotype. Proc Natl Acad Sci USA 1998;95:12544–12549.

    Article  PubMed  CAS  Google Scholar 

  39. Elsawa SF, Taylor W, Petty CC, Marriott I, Weinstock JV, Bost KL: Reduced CTL response and increased viral burden in substance P receptor-deficient mice infected with murine gamma-herpesvirus 68. J Immunol 2003; 170:2605–2612.

    PubMed  CAS  Google Scholar 

  40. Flageole H, Senterman M, Trudel JL: Substance-P increases in vitro lymphokine-activated-killer (Lak) cell cytotoxicity against fresh colorectal-cancer cells. J Surg Res 1992;53:445–449.

    Article  PubMed  CAS  Google Scholar 

  41. Lang K, Drell TL, Niggemann B, Zanker KS, Entschladen F: Neurotransmitters regulate the migration and cytotoxicity in natural killer cells. Immunol Lett 2003;90: 165–172.

    Article  PubMed  CAS  Google Scholar 

  42. Svensson, A, Kaim J, Mallard C, et al: Neurokinin 1 receptor signaling affects the local innate immune defense against genital herpes virus infection. J Immunol 2005;175:6802–6811.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divito, S., Cherpes, T.L. & Hendricks, R.L. A triple entente: Virus, neurons, and CD8+ T cells maintain HSV-1 latency. Immunol Res 36, 119–126 (2006). https://doi.org/10.1385/IR:36:1:119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:36:1:119

Key Words

Navigation