Skip to main content
Log in

Advances in the understanding and treatment of human severe combined immunodeficiency

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Human severe combined immunodeficiency (SCID) can result from mutations in any one of at least seven different genes, including those for adenosine deaminase, the common cytokine receptor gamma chain, Janus kinase 3, IL-7 receptor alpha chain, recombinase activation genes 1 and 2, and CD45. Except for adenosine deaminase, knowledge concerning the latter causes of human SC ID has accured since 1993. Advances in the treatment of this syndrome have been no less significant. Since 1982 it has been possible, by rigorous depletion of T cells from the donor marrow to use related marrow donors other than HLA-identical siblings for successful treatment of infants with this condition. The success rate with the latter type of transplant exceeds 95% if a transplant can be performed within the first 3.5 mo of life, making early diagnosis crucial. Recently, gene therapy has also been successful in infants with X-linked SCID.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Buckley RH, Schiff RI, Schiff SE, et al.: Human severe combined immunodeficiency (SCID): Genetic, phenotypic and functional diversity of 108 infants. J Pediatr 1997;130:378–387.

    Article  PubMed  CAS  Google Scholar 

  2. Buckley RH, Schiff SE, Schiff RI, et al.: Hematopoietic stem cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med 1999;340: 508–516.

    Article  PubMed  CAS  Google Scholar 

  3. Glanzmann E, Riniker P: Essentielle lymphocytophtose. Ein neues krankeitshbild aus der Sauglings-pathologie. Ann Paediat 1950;174: 1–5.

    Google Scholar 

  4. Bosma, GC, Custer RP, Bosma MJ: A severe combined immunodeficiency mutation in the mouse. Nature 1983;301:527–530.

    Article  PubMed  CAS  Google Scholar 

  5. Giblett ER, Anderson JE, Cohen I: Adenosine deaminase deficiency in two patients with severely impaired cellular immunity. Lancet 1972;2:1067–1070.

    Article  PubMed  CAS  Google Scholar 

  6. Noguchi M, Yi H, Rosenblatt HM, et al.: Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 1993;73:147–157.

    Article  PubMed  CAS  Google Scholar 

  7. Puck JM, Deschenes SM, Porter JC, et al.: The interleukin-2 receptor gamma chain maps to Xq13.1 and is mutated in X-linked severe combined immunodeficiency, SC1DX1. Human Molecular Genetics 1993;2:1099–1104.

    Article  PubMed  CAS  Google Scholar 

  8. Stephan JL, Vlekova V, Le Deist F, et al.: Severe combined immuno deficiency: a retrospective single-center study of clinical presentation and outcome in 117 cases. J Pediatr 1993;123: 564–572.

    Article  PubMed  CAS  Google Scholar 

  9. Patel DD, Gooding ME, Parrott RE, Curtis KM, Haynes BF, Buckley RH: Thymic function after hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med 2000; 342(18):1325–1332.

    Article  PubMed  CAS  Google Scholar 

  10. Fischer A, Malissen B: Natural and engineered disorders of lymphocyte development. Science 1998; 280:237–253.

    Article  PubMed  CAS  Google Scholar 

  11. Puel A, Ziegler SF, Buckley RH, Leonard WJ: Defective 1L7R expression in T(−)B(+)NK(+) severe combined immunodeficiency. Nat Genet 1998;20(4): 394–397.

    Article  PubMed  CAS  Google Scholar 

  12. Altman PL: Blood leukocyte values: man. In: Dittmer DS editor. Blood and other body fluids. Washington, DC: Federation of American Societies for Experimental Biology, 1961:125–126.

    Google Scholar 

  13. Myers LA, Riester DE, Schiff RI, et al.: Bone marrow transplantation for SCID in the neonatal period. J Allergy Clin Immunol 1997;99S(1):101.

    Google Scholar 

  14. Hirschhorn R: A denosine deaminase deficiency: molecular basis and recent developments. Clin Immunol Immunopathol 1995;76: S219-S227.

    Article  PubMed  CAS  Google Scholar 

  15. Noguchi M, Nakamura Y, Russell SM, et al.: Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 1993;262: 1977–1880.

    Article  Google Scholar 

  16. Russell SM, Tayebi N, Nakajima H, et al.: Mutation of Jak3 in a patient with SCID: Essential role of Jak3 in lymphoid development. Science 1995;270:797–800.

    Article  PubMed  CAS  Google Scholar 

  17. Schwarz K, Gauss GH, Ludwig L, et al.: RAG mutations in human B cell-negative SC1D. Science 1996;274:97–99.

    Article  PubMed  CAS  Google Scholar 

  18. Kung C, Pingel JT, Heikinheimo M, et al.: Mutations in the tyrosine phosphatase C D45 gene in a child with severe combined immunode-ficiency disease. Nat Med 2000;6(3):343–345.

    Article  PubMed  CAS  Google Scholar 

  19. Shovlin CL, Simmonds HA, Fairbanks LD, et al.: Adult onset immunodeficiency caused by in herited adenosine deaminase deficiency. J Immunol 1994;153: 2331–2339.

    PubMed  CAS  Google Scholar 

  20. Sugamura K, Asao H, Kondo M, et al.: The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Ann Rev Immunol 1996;14: 179–205.

    Article  CAS  Google Scholar 

  21. Puck JM, Pepper AE, Henthom PS, et al.: Mutation analysis of IL2RG in human X-linked severe combined immunodeficiency. Blood 1997;89:1968–1977.

    PubMed  CAS  Google Scholar 

  22. Russell SM, Keegan AD, Harada N, et al.: Interleukin-2 receptor gamma chain: a functional component of the interleukin-4 receptor. Science 1993;262:1880–1883.

    Article  PubMed  CAS  Google Scholar 

  23. Stephan V, Wahn V, LeDeist F, et al.: A typical X-linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells. N Engl J Med 1996;335:1563–1567.

    Article  PubMed  CAS  Google Scholar 

  24. Macchi P, Villa A, Gillani S, et al.: Mutations of Jak-3 gene in patients with autosomal severe combined immunedeficiency (SCID). Nature 1995;377:65–68.

    Article  PubMed  CAS  Google Scholar 

  25. Sharfe N, Dadi HK, Roifman CM: Jak3 protein tyrosine kinase mediates interleukin-7-induced activation of phosphatidylinositol-3′ kinase. Blood 1995;86:2077–2085.

    PubMed  CAS  Google Scholar 

  26. Kokron CM, Bonilla FA, Oettgen HC, Ramesh N, Geha RS, Pandolfi F: Searching for genes involved in the pathogenesis of primary immunodeficiency diseases: lessons from mouse knockouts. J Clin Immunol 1997;17:109–126.

    Article  PubMed  CAS  Google Scholar 

  27. Villa A, Santagata S, Bozzi F, et al.: Partial V(D)J recombination activity leads to Omennsyndrome. Cell 1998;93(5):885–896.

    Article  PubMed  CAS  Google Scholar 

  28. Rieux-Laucat F, Bahadoran P, Brousse N, et al.: Highly restricted human T cell repertoire in peripheral blood and tissue-infiltrating lymphocytes in Omenn's syndrome. J Clin Invest 1998;102(2):312–321.

    PubMed  CAS  Google Scholar 

  29. Brooks EG, Filipovich AH, Padgett JW, Mamlock R, Goldblum RM: T-cell receptor analysis in Omenn's syndrome: evidence for defects in gene rearrangement and assembly. Blood 1999;93(1):242–250.

    PubMed  CAS  Google Scholar 

  30. Martin JV, Willoughby PB, Giusti V, Price G, Cerezo L: The lymph node pathology of Omenn's syndrome. Amer J Surg Path 1995; 19:1082–1087.

    Article  CAS  Google Scholar 

  31. Dausset J: Iso-leuko anticorps. Acta Haemat 1958;20:156.

    Article  PubMed  CAS  Google Scholar 

  32. Amos DB, Bach FH: Phenotypic expressions of the major histocompatibility locus in man (HL-A): leukocyte antigens and mixed leukocyte culture, reactivity. J Exp Med 1968;128:623–637.

    Article  PubMed  CAS  Google Scholar 

  33. Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 1968;2:1366–1369.

    Article  PubMed  CAS  Google Scholar 

  34. Bortin MM, Rimm AA: Severe combined immunodeficiency disease. Characterization of the disease and results of transplantation. JAMA 1977;238:591–600.

    Article  PubMed  CAS  Google Scholar 

  35. Muller-Ruchholtz W, Wottge HU, Muller-Hermelink HK: Bone marrow transplantation in rats across strong histocompatibility barriers by selective elimination of lymphoid cells in donor marrow. Transplant Proc 1976;8:537–541.

    PubMed  CAS  Google Scholar 

  36. Reisner Y, Itzicovitch L, Meshorer A, Sharon N: Hematopoietic stem cell transplantation using mouse bone marrow and spleen cells fractionated by lectins. Proc Natl Acad Sci USA 1978;75:2933–2936.

    Article  PubMed  CAS  Google Scholar 

  37. Reisner Y, Kapoor N, Kirkpatrick D, et al.: Transplantation for severe combined immunodeficiency with HLA-A, B, D, DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood 1983;61: 341–348.

    PubMed  CAS  Google Scholar 

  38. Friedrich W, Goldmann SF, Ebell W, et al.: Severe combined immunodeficiency: treatment by bone marrow transplantation in 15 infants using HLA-haptoidentical donors. Eur J Pediatr 1985;144: 125–130.

    Article  PubMed  CAS  Google Scholar 

  39. Buckley RH, Schiff SE, Sampson HA, et al.: Development of immunity in human severe primary T cell deficiency following haploidentical bone marrow stem cell transplantation. J Immunol 1986;136: 2398–2407.

    PubMed  CAS  Google Scholar 

  40. O'Reilly, RJ, Brochstein J, Collins N, et al.: Evaluation of HLA-haplo type disparate parental marrow grafts depleted of T lymphocytes by differential agglutination with a soybean lectin and Erosette depletion for the treatment of severe combined immunodeficiency. Vox Sang 1986;51:81–86.

    Article  PubMed  Google Scholar 

  41. Moen RC, Horowitz SD, Sondel PM, et al.: Immunologic reconstitution after haploidentical bone marrow transplantation for immune deficiency disorders: treatment of bone marrow cells with monoclonal antibody CT-2 and complement. Blood 1987; 70:664–669.

    PubMed  CAS  Google Scholar 

  42. O'Reilly RJ, Keever CA, Small TN, Brochstein J: The use of HLA-non-identical T cell depleted marrow transplants for correction of severe combined immunodeficiency disease. Immunodef Rev 1989;1:273–309.

    PubMed  Google Scholar 

  43. Wijnaendts L, Le Deist F, Griscelli C, Fischer A: Development of immunologic functions after bone marrow transplantation in 33 patients with severe combined immunodeficiency. Blood 1989; 74:2212–2219.

    PubMed  CAS  Google Scholar 

  44. Fischer A, Landais P, Friedrich W, et al.: European experience of bone marrow transplantation for severe combined immunodeficiency. Lancet 1990;336:850–854.

    Article  PubMed  CAS  Google Scholar 

  45. Dror Y, Gallagher R, Wara DW, et al.: Immune reconstitution in severe combined immunodeficiency disease after lectin-treated, T cell depleted haplocompatible bone marrow transplantation. Blood 1993;81:2021–2030.

    PubMed  CAS  Google Scholar 

  46. Giri N, Vowels M, Ziegler JB, Ford D, Lam-Po-Tang R: HLA non-identical T cell depleted bone marrow transplantation for primary immunodeficiency diseases. Aust N Z J Med 1994;24:26–30.

    PubMed  CAS  Google Scholar 

  47. Buckley RH: Bone marrow transplantation in primary immunodeficiency. In: Rich RR, ed. Clinical immunology: principles and practice. St. Louis: C. V. Mosby, 1995: 1813–1830.

    Google Scholar 

  48. Schiff SE, Kurtzberg J, Buckley RH: Studies of human bone marrow treated with soybean lectin and sheep erythrocytes: stepwise analysis of cell morphology, phenotype and function. Clin Exp Immunol 1987;68:685–693.

    PubMed  CAS  Google Scholar 

  49. WHO Scientific Group: Primary immunodeficiency diseases: report of a WHO scientific group. Clin Exp Immunol 1997;99:1–24.

    Google Scholar 

  50. Puck JM: Molecular and genetic basis of X-linked immunodeficiency disorders. J Clin Immunol 1994;14:81–89.

    Article  PubMed  CAS  Google Scholar 

  51. Hirschhorn R: Immunodeficiency diseases due to deficiency of adenosine deaminase. In: Ochs HD, Smith CIE, Puck JM, eds. Primary immunodeficiency diseases: A molecular and genetic approach. New York and Oxford: Oxford University Press, 1999:121–139.

    Google Scholar 

  52. Buckley RH, Dees SC, O'Fallon WM: Serum immunoglobulins I. levels in normal children and in uncomplicated childhood allergy. Pediatr 1968;41:600–611.

    CAS  Google Scholar 

  53. Buckley RH, Fiscus SA: Serum IgD and IgE concentrations in immunodeficiency disease. J Clin Invest 1975;55:157–165.

    Article  PubMed  CAS  Google Scholar 

  54. Buckley RH, Dees SC: Serum immunoglobulins. III. Abnormalities associated with chronic urticaria in children. J Allergy 1967;40:294–303.

    Article  PubMed  CAS  Google Scholar 

  55. Van Den Berg H, Vossen JM, van den Bergh RL, Bayer J, van Tol MJD: Detection of Y chromosome by in situ hybridization in combination with membrane antigens by two-color immunofluo-rescence. Lab Invest 1994;64: 623–628.

    Google Scholar 

  56. Douek DC, McFarland, RD, Keiser PH, et al.: Changes in thymic function with age and during the treatment of HIV infection. Nature 1998;396:690–695.

    Article  PubMed  CAS  Google Scholar 

  57. Przepiorka D, Weisdorf D, Martin P, et al.: Consensus conference on acute GVHD grading. Bone Marrow Transplantation 1995;15: 825–828.

    PubMed  CAS  Google Scholar 

  58. Ghory P, Schiff S, Buckley R: Appearance of multiple benign paraproteins during early engraftment of soy lectin T cell-depleted haploidentical bone marrow cells in severe combined immunodeficiency. J Clin Immunol 1986;6: 161–169.

    Article  PubMed  CAS  Google Scholar 

  59. Kent EF, Crawford J, Cohen HJ, Buckley RH: Development of multiple monoclonal serum immunoglobulins (multiclonal gammopathy) following both HLA-identical unfractionated and T cell-depleted haploidentical bone marrow transplantation in severe combined immunodeficiency. J Clin Immunol 1990;10: 106–114.

    Article  PubMed  Google Scholar 

  60. Gerritsen EJA, van Tol MJD, Lankester AC, et al.: Immunoglobulin levels and monoclonal gammopathies in children after bone marrow transplantation. Blood 1993;82:3493–3502.

    PubMed  CAS  Google Scholar 

  61. Clement-De Boers A, Oostdijk W, Van Weel-Sipman MH, Van den Broeck J, Wit JM, Vossen JM: Final height and hormonal function after bone marrow transplantation in children. J Pediatr 1996;129: 544–550.

    Article  PubMed  CAS  Google Scholar 

  62. Haddad E, Landais P, Friedrich W, et al.: Long-term immune reconstitution and outcome after HLA-nonidentical T-cell-depleted bone marrow transplantation for severe combined immunodeficiency: a European retrospective study of 116 patients. Blood 1998; 91(10):3646–3653.

    PubMed  CAS  Google Scholar 

  63. Haddad E, Deist FL, Aucouturier P, et al.: Long-term chimerism and B-cell function after bone marrow transplantation in patients with severe combined immunodeficiency with B cells: A single-center study of 22 patients. Blood 1999; 94(8):2923–2930.

    PubMed  CAS  Google Scholar 

  64. Kurtzberg J, Laughlin M, Graham ML, et al.: Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. New Engl J Med 1996; 335(3):157–166.

    Article  PubMed  CAS  Google Scholar 

  65. Gluckman E, Rocha V, Boyer-Chammard A, et al.: Outcome of cord blood transplantation from related and unrelated donors. New Engl J Med 1997;337:373–381.

    Article  PubMed  CAS  Google Scholar 

  66. Flake AW, Roncarolo MG, Puck JM, et al.: Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow. N Engl J Med 1996;335:1806–1810.

    Article  PubMed  CAS  Google Scholar 

  67. Wengler GS, Lanfranchi A, Frusca T, et al.: In-utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X-linked severe combined immunodeficiency (SCIDX1). Lancet 1996;348:1484–1487.

    Article  PubMed  CAS  Google Scholar 

  68. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al.: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288:669–672.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckley, R.H. Advances in the understanding and treatment of human severe combined immunodeficiency. Immunol Res 22, 237–251 (2000). https://doi.org/10.1385/IR:22:2-3:237

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:22:2-3:237

Key Words

Navigation