Skip to main content
Log in

Zebrafish and cardiac toxicology

  • Original Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Model systems are a mainstay in toxicological research. Zebrafish are rapidly becoming an important model organism for studying vertebrate development. The advantages of zebrafish: short reproductive cycle, production of numerous transparent, synchronously developing embryos, low cost, and standardization make zebrafish and attractive model for toxicologists as well. The use of these fish to study heart development has moved forward very rapidly, laying the groundwork for studying the effects of chemicals on cardiac development and function. Here we describe approaches that can be used to study cardiac toxicity in developing zebrafish, focusing on examples where zebrafish embryos have been especially useful in understanding the impact of specific toxicants on heart development and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill, A.J., Teraoka, H., Heideman, W., and Peterson, R.E. (2005). Zebrafish as a model vertebrate for investigating toxicity. Toxicol. Sci. (in press).

  2. Scalzo, F.M., and Levin, E.D. (2004). The use of zebrafish (Danio rerio) as a model system in neurobehavioral toxicology. Neurotoxicol. Teratol. 26:707–708.

    Article  PubMed  CAS  Google Scholar 

  3. Spitsbergen, J.M., and Kent, M.L. (2003). The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations. Toxicol. Pathol. 31(Suppl.):62–87.

    PubMed  CAS  Google Scholar 

  4. Teraoka, H., Dong, W., and Hiraga, T. (2003). Zebrafish as a novel experimental model for developmental toxicology. Congenit. Anom. (Kyoto) 43:123–132.

    Article  CAS  Google Scholar 

  5. Lele, Z., and Krone, P.H. (1996). The zebrafish as a model system in developmental, toxicological and transgenic research. Biotechnol. Adv. 14:57–72.

    Article  PubMed  CAS  Google Scholar 

  6. Stainier, D., Fouquet, B., Chen, J., Warren, K, Weinstein, B., Meiler, S., et al. (1996). Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123:285–292.

    PubMed  CAS  Google Scholar 

  7. Chen, J., Haffter, P., Odenthal, J., Vogelsang, E., Brand, M., van Eeden, F., et al.: (1996). Mutations affecting the cardiovascular system and otherinternal organs in zebrafish. Development 123:293–302.

    PubMed  CAS  Google Scholar 

  8. Amsterdam, A., Nissen, R.M., Sun, Z., Swindell, E.C., Farrington, S., and Hopkins, N. (2004). Identification of 315 genes essential for early zebrafish development. Proc. Natl. Acad. Sci. USA 101:12,792–12,797.

    Article  CAS  Google Scholar 

  9. Le Trinh, A., and Stainier, D.Y. (2004). Cardiac development. Methods Cell Biol. 76:455–473.

    Article  PubMed  CAS  Google Scholar 

  10. Hove, J.R., Koster, R.W., Forouhar, A.S., Acevedo-Bolton, G., Fraser, S.E., and Gharib, M. (2003). Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177.

    Article  PubMed  CAS  Google Scholar 

  11. Bartman, T., Walsh, E.C., Wen, K.K., McKane, M., Ren, J., Alexander, J., et al. 2004). Early myocardial function affects endocardial cushion development in zebrafish. PLoS Biol. 2:E129.

    Article  PubMed  Google Scholar 

  12. Hu, N., Sedmera, D. Yost, H.J., and Clark, E.B. (2000). Structure and function of the developing zebrafish heart. Anat. Rec. 260:148–157.

    Article  PubMed  CAS  Google Scholar 

  13. Incardona, J.P., Collier, T.K., and Scholz, N.L. (2004). Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol. Appl. Pharmacol. 196:191–205.

    Article  PubMed  CAS  Google Scholar 

  14. Henry, T.R., Spitsbergen, J.M., Hornung, M.W., Abnet, C.C., and Peterson, R.E. (1997). Early life stage toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin, in zebrafish (Danio rerio). Toxicol. Appl. Pharmacol. 142:56–68.

    Article  PubMed  CAS  Google Scholar 

  15. Belair, C.D., Peterson, R.E., and Heideman, W. (2001). Disruption of erythropoiesis by dioxin in the zebrafish. Dev. Dyn. 222:581–594.

    Article  PubMed  CAS  Google Scholar 

  16. Teraoka, H., Dong, W., Ogawa, S., Tsukiyama, S., Okuhara, Y., Niiyama, M., et al. (2002). 2,3,7,8-Tetrachlorodibenzo-p-dioxin toxicity in the zebrafish embryo: altered regional blood flow and impaired lower jaw development. Toxicol. Sci. 65:192–199.

    Article  PubMed  CAS  Google Scholar 

  17. Dong, W., Teraoka, H., Tsujimoto, Y., Stegeman, J.J., and Hiraga, T. (2004). Role of aryl hydrocarbon receptor in mesencephalic circulation failure and apoptosis in zebrafish embryos exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Sci. 77:109–116.

    Article  PubMed  CAS  Google Scholar 

  18. Dong, W., Teraoka, H., Yamazaki, K., Tsukiyama, S., Imani, S., Imagawa, T., et al. (2002). 2,3,7,8-tetrachloro-dibenzo-p-dioxin toxicity in the zebrafish embryo: local circulation failure in the dorsal midbrain is associated with increased apoptosis. Toxicol. Sci. 69:191–201.

    Article  PubMed  CAS  Google Scholar 

  19. Prasch, A.L., Teraoka, H., Carney, S.A., Dong, W., Hiraga, T., Stegeman, J.J., et al. (2003): Aryl hydrocarbon receptor 2 mediates 2,3,7,8-tetrachlorodibenzo-p-dioxin developmental toxicity in zebrafish. Toxicol. Sci. 76:138–150.

    Article  PubMed  CAS  Google Scholar 

  20. Carney, S.A., Peterson, R.E., and Heideman, W. (2004). 2,3,7,8-Tetrachlorodibenzo-p-dioxin activation of the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator pathway causes developmental toxicity through a CYP1A-independent mechanism in zebrafish. Mol. Pharmacol. 66:512–521.

    PubMed  CAS  Google Scholar 

  21. Prasch, A.L., Heideman, W., and Peterson R.E. (2004). ARNT2 is not required for TCDD developmental toxicity in zebrafish. Toxicol. Sci. 82(1):250–258.

    Article  PubMed  CAS  Google Scholar 

  22. Ransom, D.G., Haffter, P., Odenthal, J., Brownlie, A., Vogelsang, E., Kelsh, R.N., et al. (1996). Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development 123:311–319.

    PubMed  CAS  Google Scholar 

  23. Kudoh, T., Tsang, M., Hukriede, N.A., Chen, X., Dedekian, M., Clarke, C.J., et al. (2001). A gene expression screen in zebrafish embryogenesis. Genome Res. 11:1979–1987.

    Article  PubMed  CAS  Google Scholar 

  24. Antkiewicz, D.S., Burns, C.G., Carney, S.A., Peterson, R.E., and Heideman, W. (2005). Heart malformation is an early response to TCDD in embryonic zebrafish. Toxicol. Sci. 84:1–10.

    Article  Google Scholar 

  25. Mably, J.D., Mohideen, M.A., Burns, C.G., Chen, J.N., and Fishman, M.C. (2003). Heart of glass regulates the concentric growth of the heart in zebrafish. Curr. Biol. 13: 2138–2147.

    Article  PubMed  CAS  Google Scholar 

  26. Jokinen, M.P., Walker, N.J., Brix, A.E., Sells, D.M., Haseman, J.K., and Nyska, A. (2003). Increase in cardiovascular pathology in female Sprague-Dawley rats following chronic treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin and 3,3′,4,4′,5-pentachlorobiphenyl. Cardiovasc. Toxicol. 3:299–310.

    Article  PubMed  CAS  Google Scholar 

  27. Ivnitski, I., Elmaoued, R., and Walker, M.K. (2001). 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibition of coronary development is preceded by a decrease in myocyte proliferation and an increase in cardiac apoptosis. Teratology 64:201–212.

    Article  PubMed  CAS  Google Scholar 

  28. Walker, M.K., Johnson, C.D., Tadesse, M., Ramos, K.S., Steele, I.D., and Thackaberry, E.A. (2003). Dioxin induces growth arrest and reduces cell cycle gene expression in the fetal murine heart. Toxicologist 77:231.

    Google Scholar 

  29. Bello, S.M., Heideman, W., and Peterson, R.E. (2004). 2,3,7,8-tetrachlorodibenzo-p-dioxin inhibits regression of the common cardinal vein in developing zebrafish. Toxicol. Sci. 78:258–266.

    Article  PubMed  CAS  Google Scholar 

  30. Lawson, N.D., and Weinstein, B.M. (2002). In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248:307–318.

    Article  PubMed  CAS  Google Scholar 

  31. Perz-Edwards, A., Hardison, N.L., and Linney, E. (2001). Retinoic acid-mediated gene expression in transgenic reporter zebrafish. Dev. Biol. 229:89–101.

    Article  PubMed  CAS  Google Scholar 

  32. Isogai, S., Horiguchi, M., and Weinstein, B.M. (2001). The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev. Biol. 230: 278–301.

    Article  PubMed  CAS  Google Scholar 

  33. Cheng, S.H., Chan, P.K.., and Wu, R.S. (2001). The use of microangiography in detecting aberrant vasculature in zebrafish embryos exposed to cadmium. Aquat. Toxicol. 52:61–71.

    Article  PubMed  CAS  Google Scholar 

  34. Ho, R.K., and Kane, D.A. (1990). Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors. Nature 348:728–730.

    Article  PubMed  CAS  Google Scholar 

  35. Kimmel, C.B., and Warga, R.M. (1988). Cell lineage and developmental potential of cells in the zebrafish embryo. Trends Genet. 4:68–74.

    Article  PubMed  CAS  Google Scholar 

  36. Baker, K., Warren, K.S., Yellen, G., and Fishman, M.C. (1997). Defective “pacemaker” current (Ih) in a zebrafish mutant with a slow heart rate. Proc. Natl. Acad. Sci. USA 94:4554–4559.

    Article  PubMed  CAS  Google Scholar 

  37. Langheinrich, U., Vacun, G., and Wagner, T. (2003). Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia. Toxicol. Appl. Pharmacol. 193: 370–382.

    Article  PubMed  CAS  Google Scholar 

  38. MacRae, C.A., and Peterson, R.T. (2003). Zebrafish-based small molecule discovery. Chem. Biol. 10:901–908.

    Article  PubMed  CAS  Google Scholar 

  39. Milan, D.J., Peterson, T.A., Ruskin, J.N., Peterson, R.T., and MacRae, C.A. (2003). Drugs that induce replarization abnormalities cause bradycardia in zebrafish. Circulation 107:1355–1358.

    Article  PubMed  Google Scholar 

  40. Paffett-Lugassy, N.N., and Zon, L.I. (2004). Analysis of hematopoietic development in the zebrafish. Meth. Mol. Med. 105:171–198.

    Google Scholar 

  41. Peterson, R.T., Shaw, S.Y., Peterson, T.A., Milan, D.J., Zhong, T.P., Schreiber, S.L., et al. (2004). Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat. Biotechnol. 22:595–599.

    Article  PubMed  CAS  Google Scholar 

  42. Peterson, R.T., Mably, J.D., Chen, J.N., and Fishman, M.C. (2001). Convergence of distinct pathways to heart patterning revealed by the small molecule concentramide and the mutation heart-and-soul. Curr. Biol. 11:1481–1491.

    Article  PubMed  CAS  Google Scholar 

  43. Zhong, T.P., Rosenberg, M., Mohideen, M.A., Weinstein, B., and Fishman, M.C. (2000). gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287: 1820–1824.

    Article  PubMed  CAS  Google Scholar 

  44. Horne-Badovinac, S., Lin, D., Waldron, S., Schwarz, M., Mbamalu, G., Pawson, T., et al. (2001). Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis. Curr. Biol. 11:1492–1502.

    Article  PubMed  CAS  Google Scholar 

  45. Sehnert, A.J., Huq, A., Weinstein, B.M., Walker, C., Fishman, M., and Stainier, D.Y. (2002). Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat. Genet. 31:106–110.

    Article  PubMed  CAS  Google Scholar 

  46. Ekker, S.C., and Larson, J.D. (2001). Morphant technology in model developmental systems. Genesis 30:89–93.

    Article  PubMed  CAS  Google Scholar 

  47. Prasch, A.L., Andreasen, E.A., Peterson, R.E., and Heideman, W. (2004). Interactions between 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and hypoxia signaling pathways in zebrafish: hypoxia decreases responses to TCDD in zebrafish embryos. Toxicol. Sci. 78:68–77.

    Article  PubMed  CAS  Google Scholar 

  48. Teraoka, H., Dong, W., Tsujimoto, Y., Iwasa, H., Endoh, D., Ueno, N., et al.: (2003). Induction of cytochrome P450 1A is required for circulation failure and edema by 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish. Biochem. Biophys. Res. Commun. 304:223–228.

    Article  PubMed  CAS  Google Scholar 

  49. Ton, C., Stamatiou, D., Dzau, V.J., and Liew, C.C. (2002). Construction of a zebrafish cDNA microarray: gene expression profiling of the zebrafish during development. Biochem. Biophys. Res. Commun. 296:1134–1142.

    Article  PubMed  CAS  Google Scholar 

  50. Ton, C., Stamatiou, D., and Liew, C.C. (2003). Gene expression profile of zebrafish exposed to hypoxia during development. Physiol. Genomics 13:97–106.

    PubMed  CAS  Google Scholar 

  51. Linney, E., Dobbs-McAuliffe, B, Sajadi, H., and Malek, R.L. (2004). Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp. Biochem. Physiol. C Toxicol. Pharmacol 138:351–362.

    Article  PubMed  CAS  Google Scholar 

  52. Leung, A.Y., Mendenhall, E.M., Kwan, T.T., Liang, R., Eckfeldt, C., Chen, E., et al. (2005). Characterization of expanded intermediate cell mass in zebrafish chordin morphant embryos. Dev. Biol. 277:235–254.

    Article  PubMed  CAS  Google Scholar 

  53. Rawls, J.F., Samuel, B.S., and Gordon, J.I. (2004). Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. USA 101:4596–4601.

    Article  PubMed  CAS  Google Scholar 

  54. Shrader, E.A., Henry, T.R., Greeley, M.S., Jr., and Bradley, B.P. (2003). Proteomics in zebrafish exposed to endocrine disrupting chemicals. Ecotoxicology 12:485–488.

    Article  PubMed  CAS  Google Scholar 

  55. Kupperman, E., An, S., Osborne, N., Waldron, S., and Stainier, D.Y. (2000). A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 406:192–195.

    Article  PubMed  CAS  Google Scholar 

  56. Kikuchi, Y., Agathon, A., Alexander, J., Thisse, C., Waldron, S., Yelon, D., et al. (2001). Casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev. 15: 1493–1505.

    Article  PubMed  CAS  Google Scholar 

  57. Alexander, J., Rothenberg, M., Henry, G.L., and Stainier, D.Y. (1999). Casanova plays an early and essential role in endoderm formation in zebrafish. Dev. Biol. 215:343–357.

    Article  PubMed  CAS  Google Scholar 

  58. Reiter, J.F., Alexander, J., Rodaway, A., Yelon, D., Patient, R., Holder, N., et al. (1999). Gata 5 is required for the development of the heart and endoderm in zebrafish. Genes Dev. 13:2983–2995.

    Article  PubMed  CAS  Google Scholar 

  59. Trinhle, A., and Stainier, D.Y. (2004) Fibronectin regulates epithelial organization during myocardial migration in zebrafish. Dev. Cell 6:371–382.

    Article  Google Scholar 

  60. Kikuchi, Y., Trinh, L.A., Reiter, J.F., Alexander, J., Yelon, D., and Stainier, D.Y. (2000). The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. Genes Dev. 14:1279–1289.

    PubMed  CAS  Google Scholar 

  61. Keegan, B.R., Feldman, J.L., Lee, D.H., Koos, D.S., Ho, R.K., Stainier, D.Y., et al. (2002). The elongation factors Pandora/Spt6 and Foggy/Spt5, promote transcription in the zebrafish embryo. Development 129:1623–1632.

    PubMed  CAS  Google Scholar 

  62. Shu, X., Cheng, K., Patel, N., Chen, F., Joseph, E., Tsai, H.J., et al. (2003). Na, K-ATPase is essential for embryonic heart development in the zebrafish. Development 130: 6165–6173.

    Article  PubMed  CAS  Google Scholar 

  63. Yuan, S., and Joseph, E.M. (2004). The small heart mutation reveals novel roles of Na+/K+-ATPase in maintaining ventricular cardiomyocyte morphology and viability in zebrafish. Circ. Res. 95:595–603.

    Article  PubMed  CAS  Google Scholar 

  64. Gritsman, K., Zhang, J., Cheng, S., Heckscher, E., Talbot, W.S., and Schier, A.F. (1999). The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97: 121–132.

    Article  PubMed  CAS  Google Scholar 

  65. Schier, A.F., Neuhauss, S.C., Helde, K.A., Talbot, W.S., and Driever, W. (1997). The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124:327–342.

    PubMed  CAS  Google Scholar 

  66. Griffin, K.J., Amacher S.L., Kimmel, C.B., and Kimelman, D. (1998). Molecular identification of spadetail: regulation of zebrafish trunk and tail mesoderm formation by T-box genes. Development 125:3379–3388.

    PubMed  CAS  Google Scholar 

  67. Yelon, D., Ticho, B., Halpern, M.E.., Ruvinsky, I., Ho, R.K., Silver, L.M., et al. (2000). The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development 127:2573–2582.

    PubMed  CAS  Google Scholar 

  68. Liao, W., Ho, C.Y., Yan, Y.L., Postlethwait, J., and Stainier, D.Y. (2000). Hhex and scl function in parallel to regulate early endothelial and blood differentiation in zebrafish. Development 127:4303–4313.

    PubMed  CAS  Google Scholar 

  69. Walsh, E.C., and Stainier, D.Y. (2001). UDP-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science 293:1670–1673.

    Article  PubMed  CAS  Google Scholar 

  70. Jiang, Y.J., Brand, M., Heisenberg, C.P., Beuchle, D., Furutani-Seiki, M., Kelsh, R.N., et al. (1996). Mutations affecting neurogenesis and brain morphology in the zebrafish, Danio rerio. Development 123:205–216.

    PubMed  CAS  Google Scholar 

  71. Berdougo, E., Coleman, H., Lee, D.H., Stainier, D.Y., and Yelon, D. (2003). Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish. Development 130:6121–6129.

    Article  PubMed  CAS  Google Scholar 

  72. Garrity, D.M., Childs, S., and Fishman, M.C. (2002). The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome. Development 129:4635–4645.

    PubMed  CAS  Google Scholar 

  73. Rottbauer, W., Baker, K., Wo, Z.G., Mohideen, M.A., Cantiello, H.F., and Fishman, M.C. (2001). Growth and function of the embryonic heart depend upon the cardiac-specific L-type calcium channel alphal subunit. Dev. Cell 1:265–275.

    Article  PubMed  CAS  Google Scholar 

  74. Xu, X., Meiler, S.E., Zhong, T.P., Mohideen, M., Crossley, D.A., Burggren, W.W., et al. (2002). Cardiomyopathy in zebrafish due to mutation in an alternatively spliced exon of titin. Nat. Genet. 30:205–209.

    PubMed  CAS  Google Scholar 

  75. Schauerte, H.E., van Eeden, F.J., Fricke, C., Odenthal, J., Strahle, U., and Haffer, P. (1998). Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish. Development 125:2983–2993.

    PubMed  CAS  Google Scholar 

  76. Karlstrom, R.O., Tyurina, O.V., Kawakami, A., Nishioka, N., Talbot, W.S., Sasaki, H., et al. (2003). Genetic analysis of zebrafish gli1 and gli2 reveals divergent requirements for gli genes in vertebrate development. Development 130: 1549–1564.

    Article  PubMed  CAS  Google Scholar 

  77. Nakano, Y., Kim, H.R., Kawakami, A., Roy, S., Schier, A.F., and Ingham, P.W. (2004). Inactivation of dispatched 1 by the chameleon mutation disrupts Hedgehog signalling in the zebrafish embryo. Dev. Biol. 269:381–392.

    Article  PubMed  CAS  Google Scholar 

  78. Begemann, G., and Ingham, P.W. (2000). Developmental regulation of Tbx5 in zebrafish embryogenesis. Mech. Dev. 90:299–304.

    Article  PubMed  CAS  Google Scholar 

  79. Alexander, J. Stainier, D.Y., and Yelon, D. (1998). Screening mosaic F1 females for mutations affecting zebrafish heart induction and patterning. Dev. Genet. 22:288–299.

    Article  PubMed  CAS  Google Scholar 

  80. Yelon, D., Horne, S.A., and Stainier, D.Y. (1999). Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. Dev. Biol. 214: 23–37.

    Article  PubMed  CAS  Google Scholar 

  81. Cheng, C.W., Hui, C. Strahle, U., and Cheng, S.H. (2001). Identification and expression of zebrafish Iroquois homeo-box gene irx 1. Dev. Genes Evol. 211: 442–444.

    Article  PubMed  CAS  Google Scholar 

  82. Hurlstone, A.F., Haramis, A.P., Wienholds, E., Begthel, H., Korving, J., Van Eeden, F., et al. (2003). The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature 425:633–637.

    Article  PubMed  CAS  Google Scholar 

  83. Zhong, T.P., Childs, S., Leu, J.P., and Fishman, M.C. (2001). Gridlock signalling pathway fashions the first embryonic artery. Nature 414:216–220.

    Article  PubMed  CAS  Google Scholar 

  84. Huang, C.J., Tu, C.T., Hsiao, C.D., Hsieh, F.J., and Tsai, H.J. (2003). Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev. Dyn. 228:30–40.

    Article  PubMed  CAS  Google Scholar 

  85. Motoike, T., Loughna, S., Perens, E., Roman, B.L., Liao, W., Chau, T.C., et al. (2000). Universal GFP reporter for the study of vascular development. Genesis 28: 75–81.

    Article  PubMed  CAS  Google Scholar 

  86. Long, Q., Meng, A., Wang, H., Jessen, J.R., Farrell, M.J., and Lin, S. (1997). GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124:4105–4111.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren Heideman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heideman, W., Antkiewicz, D.S., Carney, S.A. et al. Zebrafish and cardiac toxicology. Cardiovasc Toxicol 5, 203–214 (2005). https://doi.org/10.1385/CT:5:2:203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:5:2:203

Key Words

Navigation