Skip to main content
Log in

Comprehensive Comparisons between 1-Phenyl-3-methyl-5-pyrazolones, 1-(4-Methoxyphenyl)-3-methyl-5-pyrazolones and 1-(2-Naphthyl)-3-methyl-5-pyrazolones as Labeling Reagents Used in LC-DAD-ESI-MS-MS Analysis of Neutral Aldoses and Uronic Acids

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Comprehensive comparisons between three 1-aryl-3-methyl-5-pyrazolone (AMP) labeling reagents were carried out for the analysis of reductive monosaccharides using reversed phase high performance liquid chromatography diode array detection coupled to electrospray ionization mass spectrometry. AMP derivatives included 1-phenyl-3-methyl-5-pyrazolone (PMP), 1-(4-methoxyphenyl)-3-methyl-5-pyrazolone (PMPMP) and 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP). The separation of AMP-monosaccharides was found to be pH-dependent under reversed phase conditions and acceptable separations were obtained at pH < 4.5. The elution orders of AMP-aldoses were rationalized by geometric factors involved in the presence of hydroxyl groups at C2 and C3 positions of the saccharide moiety. When PMP or PMPMP were used as labeling agents Glucose and galactose were completely separated, while arabinose and xylose were observed to co-elute. The use of NMP revealed that arabinose and xylose could be separated while glucose and galactose were co-eluted. MS-MS data of AMP-monosaccharides gave characteristic fragment ions resulting from cleavage between the C2–C3 bond (m/z 373 for PMP derivatives, m/z 433 for PMPMP derivatives, and m/z 473 for NMP derivatives). Bond breakage between C1–C2 (m/z 359 for PMP derivatives, m/z 419 for PMPMP derivatives, and m/z 459 for NMP derivatives) of the saccharide moiety was also found to be characteristic for AMP-saccharides. Application to the analysis of hydrolyzed rape pollen polysaccharides revealed the presence of four unexpected monosaccharides, namely ribose, erythrose, threose and glyceraldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Takemoto H, Hase S, Ikenaka T (1985) Anal Biochem 145:245–250

    Article  CAS  Google Scholar 

  2. Rice KG, Takahashi N, Namiki Y, Tran AD, Lisi PJ, Lee YC (1992) Anal Biochem 206:278–287

    Article  CAS  Google Scholar 

  3. Kondo A, Suzuki J, Kuraya N, Hase S, Kato I, Ikenaka T (1990) Agric Biol Chem 54:2169–2170

    CAS  Google Scholar 

  4. Huang L, Hollingsworth RI, Castellani R, Zipser B (2004) Glycobiology 14:409–416

    Article  CAS  Google Scholar 

  5. Charlwood J, Birrell H, Gribble A, Burdes V, Tolson D, Camilleri P (2000) Anal Chem 72:1453–1461

    Article  CAS  Google Scholar 

  6. Honda S, Akao E, Suzuki S, Okuda M, Kakehi K, Nakamura J (1989) Anal Biochem 180:51–357

    Article  Google Scholar 

  7. Strydom DJ (1994) J Chromatogr A 678:17–23

    Article  CAS  Google Scholar 

  8. Fu D, O’Neill RA (1995) Anal Biochem 227:377–384

    Article  CAS  Google Scholar 

  9. Zhang L, Xu J, Zhang L, Zhang W, Zhang Y (2003) J Chromatogr B 793:159–165

    Article  CAS  Google Scholar 

  10. Yang X, Zhao Y, Zhou S, Liu L, Wang H, Mei Q (2005) Chin J Anal Chem 33:1287–1290

    CAS  Google Scholar 

  11. Lv Y, Yang X, Zhao Y, Ruan Y, Yang Y, Wang Z (2009) Food Chem 112:742–746

    Article  CAS  Google Scholar 

  12. Yang X, Zhao Y, Lv Y (2007) J Agric Food Chem 55:4684–4690

    Article  CAS  Google Scholar 

  13. Guček M, Pihlar B (2000) Chromatographia 51:S139–S142

    Article  Google Scholar 

  14. Honda S, Togashi K, Taga A (1997) J Chromatogr A 791:307–311

    Article  CAS  Google Scholar 

  15. Honda S, Suzuki S, Taga A (2003) J Pharm Biomed Anal 30:1689–1714

    Article  CAS  Google Scholar 

  16. Kakehi K, Suzuki S, Honda S, Lee YC (1991) Anal Biochem 199:256–268

    Article  CAS  Google Scholar 

  17. Kakehi K, Ueda M, Suzuki S, Honda S (1993) J Chromatogr A 630:141–146

    Article  CAS  Google Scholar 

  18. Castells CB, Arias VC, Castells RC (2002) Chromatographia 56:153–160

    Article  CAS  Google Scholar 

  19. Tapie N, Malhiac C, Hucher N, Grisel M (2008) J Chromatogr A 1181:45–50

    Article  CAS  Google Scholar 

  20. Ding C, Wang L, Tian C, Li Y, Sun Z, Wang H, Suo Y, You J (2008) Chromatographia 68:893–902

    Article  CAS  Google Scholar 

  21. You J, Sheng X, Ding C, Sun Z, Suo Y, Wang H, Li Y (2008) Anal Chim Acta 609:66–75

    Article  CAS  Google Scholar 

  22. Suzuki S, Kakehi K, Honda S (1996) Anal Chem 68:2073–2083

    Article  CAS  Google Scholar 

  23. Shen X, Perreault H (1998) J Chromatogr A 811:47–59

    Article  CAS  Google Scholar 

  24. Shen X, Perreault H (1999) J Mass Spectrom 34:502–510

    Article  CAS  Google Scholar 

  25. Harvey DJ (2003) Int J Mass Spectrom 226:1–35

    Article  CAS  Google Scholar 

  26. Yamamoto FM, Rokushika S (2004) Anal Chim Acta 501:143–149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hundred Talents Project of the Chinese Academy of Sciences (328) and the National Natural Science Foundation of China (20075016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinmao You.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Song, C., Xia, L. et al. Comprehensive Comparisons between 1-Phenyl-3-methyl-5-pyrazolones, 1-(4-Methoxyphenyl)-3-methyl-5-pyrazolones and 1-(2-Naphthyl)-3-methyl-5-pyrazolones as Labeling Reagents Used in LC-DAD-ESI-MS-MS Analysis of Neutral Aldoses and Uronic Acids. Chroma 71, 789–797 (2010). https://doi.org/10.1365/s10337-010-1570-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-010-1570-5

Keywords

Navigation