Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Self-organized array of regularly spaced microbeads in a fiber-optical trap

Not Accessible

Your library or personal account may give you access

Abstract

The behavior of several simultaneously trapped, micrometer-sized particles in a fiber-optical trap consisting of two opposing single-mode fibers delivering counterpropagating, near-IR laser beams strongly depends on the size of the particles. Whereas beads that are considerably larger than the laser wavelength are pressed against each other in an axial line, smaller beads spontaneously arrange themselves into regular chains of equidistantly separated particles suspended in space with increasing separation for increasing bead diameter. A simple model based on self-organization by means of diffraction from the particles is capable of explaining the basic features of our experimental observations in the investigated range of bead diameters and refractive indices.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Indirect optical gripping with triplet traps

Brian Koss, Sagar Chowdhury, Thomas Aabo, S. K. Gupta, and Wolfgang Losert
J. Opt. Soc. Am. B 28(5) 982-985 (2011)

Optical trapping microfabrication with electrophoretically delivered particles inside glass capillaries

Xin-Cheng Yao and Alonso Castro
Opt. Lett. 28(15) 1335-1337 (2003)

Diffraction-limited optical dipole trap with a hollow optical fiber

Yong-Il Shin, Myoungsun Heo, Jae-Wan Kim, Wooshik Shim, Heung-Ryoul Noh, and Wonho Jhe
J. Opt. Soc. Am. B 20(5) 937-941 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.