Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Scattering by a random set of parallel cylinders

Not Accessible

Your library or personal account may give you access

Abstract

A theory of scattering by a finite number of cylinders of arbitrary cross section is presented. This theory is based on a self-consistent approach that identifies incident and scattered fields around each cylinder and then uses the notion of a scattering matrix in order to get a linear system of equations. Special attention is paid to the simplified case of a sparse distribution of small cylinders for low frequencies. Surprisingly, it is found that the classical rules of homogenization must be modified in that case. The phenomenon of enhanced backscattering of light is investigated from numerical data for a dense distribution of cylinders.

© 1994 Optical Society of America

Full Article  |  PDF Article
More Like This
Scattering by closely spaced parallel nonhomogeneous cylinders in an absorbing medium

Siu-Chun Lee
J. Opt. Soc. Am. A 28(9) 1812-1819 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (100)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.