Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Microfluidic sensor based on integrated optical hollow waveguides

Not Accessible

Your library or personal account may give you access

Abstract

A simple integrated optical refractometric sensor based on hollow-core antiresonant reflecting optical waveguides is proposed. The sensor uses the antiresonant reflecting guidance mechanism and permits one to measure the refractive index of a liquid filling the core by simply monitoring the transmitted spectrum. The device has been made with standard silicon technology, and the experimental results confirm numerical simulations performed in one- and two-dimensional geometry. The sensor exhibits a linear response over a wide measurement range (1.3330–1.4450) and a resolution of 9×10-4 and requires a small analyte volume.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Antiresonant reflecting photonic crystal optical waveguides

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton
Opt. Lett. 27(18) 1592-1594 (2002)

Integrated ARROW waveguides with hollow cores

D. Yin, H. Schmidt, J.P. Barber, and A.R. Hawkins
Opt. Express 12(12) 2710-2715 (2004)

Sensor based on an integrated optical microcavity

E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto
Opt. Lett. 27(7) 512-514 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved