Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effect of random background inhomogeneity on observer detection performance

Not Accessible

Your library or personal account may give you access

Abstract

Many psychophysical studies of the ability of the human observer to detect a signal superimposed upon a uniform background, where both the signal and the background are known exactly, have been reported in the literature. In such cases, the ideal or the Bayesian observer is often used as a mathematical model of human performance since it can be readily calculated and is a good predictor of human performance for the task at hand. If, however, the background is spatially inhomogeneous (lumpy), the ideal observer becomes nonlinear, and its performance becomes difficult to evaluate. Since inhomogeneous backgrounds are commonly encountered in many practical applications, we have investigated the effects of background inhomogeneities on human performance. The task was detection of a two-dimensional Gaussian signal superimposed upon an inhomogeneous background and imaged through a pinhole imaging system. Poisson noise corresponding to a certain exposure time and aperture size was added to the detected image. A six-point rating scale technique was used to measure human performance as a function of the strength of the nonuniformities (lumpiness) in the background, the amount of blur of the imaging system, and the amount of Poisson noise in the image. The results of this study were compared with earlier theoretical predictions by Myers et al. [ J. Opt. Soc. Am. A 7, 1279 ( 1990)] for two observer models: the optimum linear discriminant, also known as the Hotelling observer, and a nonprewhitening matched filter. Although the efficiency of the human observer relative to the Hotelling observer was only approximately 10%, the variation in human performance with respect to varying aperture size and exposure time was well predicted by the Hotelling model. The nonprewhitening model, on the other hand, fails to predict human performance in lumpy backgrounds in this study. In particular, this model predicts that performance will saturate with increasing exposure time and drop precipitously with increasing lumpiness; neither effect is observed with human observers.

© 1992 Optical Society of America

Full Article  |  PDF Article
More Like This
Efficiency of the human observer detecting random signals in random backgrounds

Subok Park, Eric Clarkson, Matthew A. Kupinski, and Harrison H. Barrett
J. Opt. Soc. Am. A 22(1) 3-16 (2005)

Aperture optimization for emission imaging:effect of a spatially varying background

K. J. Myers, J. P. Rolland, H. H. Barrett, and R. F. Wagner
J. Opt. Soc. Am. A 7(7) 1279-1293 (1990)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.