Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Processing of chromatic information in a deep convolutional neural network

Not Accessible

Your library or personal account may give you access

Abstract

Deep convolutional neural networks are a class of machine-learning algorithms capable of solving non-trivial tasks, such as object recognition, with human-like performance. Little is known about the exact computations that deep neural networks learn, and to what extent these computations are similar to the ones performed by the primate brain. Here, we investigate how color information is processed in the different layers of the AlexNet deep neural network, originally trained on object classification of over 1.2M images of objects in their natural contexts. We found that the color-responsive units in the first layer of AlexNet learned linear features and were broadly tuned to two directions in color space, analogously to what is known of color responsive cells in the primate thalamus. Moreover, these directions are decorrelated and lead to statistically efficient representations, similar to the cardinal directions of the second-stage color mechanisms in primates. We also found, in analogy to the early stages of the primate visual system, that chromatic and achromatic information were segregated in the early layers of the network. Units in the higher layers of AlexNet exhibit on average a lower responsivity for color than units at earlier stages.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Modeling surface color discrimination under different lighting environments using image chromatic statistics and convolutional neural networks

Samuel Ponting, Takuma Morimoto, and Hannah E. Smithson
J. Opt. Soc. Am. A 40(3) A149-A159 (2023)

Object-based color constancy in a deep neural network

Hamed Heidari-Gorji and Karl R. Gegenfurtner
J. Opt. Soc. Am. A 40(3) A48-A56 (2023)

Optical frontend for a convolutional neural network

Shane Colburn, Yi Chu, Eli Shilzerman, and Arka Majumdar
Appl. Opt. 58(12) 3179-3186 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.