Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Design and fabrication of surface trimmed silicon-on-insulator waveguide with adiabatic spot-size converters

Not Accessible

Your library or personal account may give you access

Abstract

Theoretical and experimental studies reveal that a predefined single-mode rib waveguide fabricated in silicon-on-insulator (SOI) substrate with a device layer thickness of 2 μm can be adiabatically trimmed down to submicron waveguide dimensions (<1μm), resulting in regional modification of waveguide properties. The fabrication process involves physical trimming/removal of a waveguide surface by plasma etchants that is spatially filtered by a shadow mask with a rectangular aperture inside a reactive ion etching system. The exact position of a shadow mask above a sample surface has been optimized (500μm) to obtain the desired adiabatic spot-size converters of length up to 1 mm at both ends of the trimmed waveguides. For experimental demonstration, three different sets of 15-mm-long single-mode waveguides fabricated in 2-μm SOI were adiabatically trimmed in the middle for three different lengths of 3, 5, and 7 mm, respectively. Excess propagation loss and group index of a trimmed submicron waveguide section were extracted by analyzing the wavelength-dependent Fabry–Perot transmission characteristics of the device with polished input/output end facets. The insertion loss of a typical spot-size converter designed for the guidance of TE-like polarization has been recorded to be 0.25dB for a wide range of wavelengths (1500nmλ1600nm). As predicted by numerical simulation, no polarization rotation has been observed in all the trimmed submicron waveguides. The proposed surface trimming technique can be potentially used to tune the waveguide cross-section/geometry for phase error correction and/or to avail stronger light-matter interactions at a desired location of an integrated optical circuit.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Buried 3D spot-size converters for silicon photonics

W. Zhang, M. Ebert, J. D. Reynolds, B. Chen, X. Yan, H. Du, M. Banakar, D. T. Tran, C. G. Littlejohns, G. T. Reed, and D. J. Thomson
Optica 8(8) 1102-1108 (2021)

Fabrication and characterization of straight and compact S-bend optical waveguides on a silicon-on-insulator platform

Rupesh Kumar Navalakhe, Nandita DasGupta, and Bijoy Krishna Das
Appl. Opt. 48(31) G125-G130 (2009)

Optimization of compact lateral, vertical, and combined tapered spot-size converters by use of the beam-propagation method

Shyqyri Haxha, Emmanuel O. Ladely, Majlinda Mjeku, Fathi AbdelMalek, and B. M. Azizur Rahman
Appl. Opt. 45(2) 288-296 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.