Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Visible Infrared Imaging Radiometer Suite solar diffuser calibration and its challenges using a solar diffuser stability monitor

Not Accessible

Your library or personal account may give you access

Abstract

The reflective solar bands (RSB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (SNPP) satellite is calibrated by a solar diffuser (SD) whose performance is itself monitored by a solar diffuser stability monitor (SDSM). In this study, we describe the calibration algorithm of the SDSM, analyze the current two and a half years of calibration data, and derive the performance result for the SD, commonly called SD degradation or H-factors. The application of the newly derived vignetting functions for both the SD screen and the SDSM sun-view screen effectively removes the seasonal oscillations in the derived SD degradation and significantly improves the quality of the H-factors. The full illumination region, the so-called “sweet spot,” for both SD view and SDSM sun view is carefully examined and selected to ensure a consistent and an optimal number of valid data samples to reduce the sample noise owing to inconsistent or lack of samples. The result shows that SD degrades much faster at short wavelength as expected, about 28.5% at 412 nm but only 1.2% at 935 nm up to date. The performance of the SD degrades exponentially with time until 7 November 2013 but has since become flat. This sudden flattening of the SD degradation is a new phenomenon never previously observed for the degradations of the SD on VIIRS or other satellite sensors. The overall result shows that SDSM is essentially functioning without flaws in catching the on-orbit degradation of the SD. The most significant and direct impact of this work would be on the quality of the ocean color products that depend sensitively on moderate RSB (RSB) (M1–M8, M10, and M11). Two very important and key questions on the performance of the SD are also raised. One pertains to the directional dependence of the SD degradation result, and it is shown that the SD does not degrade uniformly in all directions as has been assumed by all SD calibration analyses. This has a definitive impact on the RSB calibration. Another is on the degradation of the SD at the shortwave infrared (SWIR) wavelengths, and it is shown that the zero degradation input for the RSB calibration would be erroneous. Last, the impact of the stray light on the SD since “first light” is cleanly exhibited in the improved SD degradation result.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
On-orbit characterization of the VIIRS solar diffuser and solar diffuser screen

Junqiang Sun and Menghua Wang
Appl. Opt. 54(2) 236-252 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved