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Abstract

Difference—in—differences analysis with a control group that differs considerably from a
treated group is vulnerable to bias from historical events that have different effects on
the groups. Constructing a more closely matched control group by matching a subset of
the overall control group to the treated group may result in less bias. We study this phe-
nomenon in simulation studies. We study the effect of mountaintop removal mining (MRM)
on mortality using a difference—in—differences analysis that makes use of the increase in
MRM following the 1990 Clean Air Act Amendments. For a difference-in—differences anal-
ysis of the effect of MRM on mortality, we constructed a more closely matched control
group and found a 95% confidence interval that contains substantial adverse effects along
with no effect and small beneficial effects.

Keywords: Difference-in-Differences, Matching, Mountaintop Removal Mining

1. Introduction

Mountaintop removal mining (MRM) mines coal within mountaintops by removing the
mountaintop through clearcutting forests and explosives, and then surface mining the ex-
cavated coal. The removed mountaintop material is deposited in valleys, burying streams.
There is evidence that MRM has negative environmental impacts, and there are concerns
about human health (Palmer et al. 2010; Lindberg et al. 2011). MRM was introduced in the
1960s but was not widespread until the 1990s (Szwilsld, Dulm, and Hooper 2000; Hendryx
and Holland 2016), increasing in part because of 1990 Clean Air Act (CAA) amendments
that made coal reserves in the Central Appalachian region more financially attractive (Milici
2000; Hendryx and Holland 2016). The acres directly impacted by MRM went from 71,046
and 77,100 in 1976 and 1985 respectively to 199,991 and 272,252 in 1995 and 2005 respec-
tively based on satellite image analysis (Amos 2009). Using the CAA amendments as a
treatment that increased exposure to MRM, Hendryx and Holland (2016) studied MRM’s
health impact using difference—in—differences analysis. In Section 2, we examine the ro-
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bustness of a related difference-in—differences analysis to violations of the parallel trend
assumption by constructing a more closely matched control group.

Difference—in—differences analysis estimates a treatment effect by considering a treat-
ment group receiving treatment in an after but not a before period and a control group
not receiving treatment in either period and taking the difference between the difference of
the treated group after and before outcomes and the difference of the control group after
and before outcomes (Meyer 1995; Shadish, Cook, and Campbell 2002; Grabich et al. 2015;
Wing, Simon, and Bello-Gomez 2018). Difference—in—differences unbiasedly estimates the
causal effect of treatment if the treatment and control groups would have exhibited parallel
trends in the counterfactual absence of treatment, and there is no interference among units
nor multiple versions of treatment; see Figure 1. The parallel trends assumption could be
violated if historical events in the after period affect the two groups differently — history in-
teracting with group bias (Meyer 1995; Shadish, Cook, and Campbell 2002). Concern about
history interacting with group bias might be lessened if the control group is more similar
to the treatment group. We propose to use multivariate matching to construct a control
group that is more closely matched to the treatment group on covariates that might affect
outcomes. In Section 3, we study the impact of such matching in estimates of a treatment
effect in a difference—in—differences analysis with the aid of numerical experiments.

1.1 Background on MRM

MRM is a form of surface mining conducted at the ridge of the Appalachian mountains.
Increased demand for coal in the United States, sparked by the 1973 and 1979 petroleum
crises, created incentives for a more economical form of coal mining than traditional under-
ground mining methods which involves hundreds of workers, triggering the first widespread
use of MRM. Its prevalence expanded further in the 1990s to retrieve relatively low-sulfur
coal, a cleaner-burning form, which became desirable as a result of the 1990 CAA amend-
ments that tightened emissions limits on high-sulfur coal processing (Burns 2005). The
development of bigger equipment that enabled MRM at scale in the later 1990s also drove
increases in MRM (Bozorgebrahimi 2003; Ramani 2012).

Mountaintop mined counties are among the poorest in the central and southern Ap-
palachia; see Figure 4. Historically, mining may have contributed to this poverty (Eller
1982), but by the 1970s, this poverty was well established (see Figure 4) and needs to be
controlled for in any analysis of the effect of MRM on health. Following (Hendryx and
Holland 2016), we consider the effect of MRM on all-cause mortality and mortality from
respiratory diseases. We examine all-cause mortality because MRM could have effects on
many aspects of health including cardiovascular disease and cancer through air and water
pollution, and mental health through solastalgia and stress of health concerns (Hendryx
2009; Christian et al. 2011; Canu et al. 2017; Cordial, Riding-Malon and Lips 2012). Mor-
tality from respiratory diseases was selected because of prior evidence that MRM generate
local air pollution and may promote poor health outcomes for these conditions (Kurth et al.
2014; Hendryx 2009; Christian et al. 2011).
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1.2 Background on Historical Crises

Two historical events that occurred in the post-CAA amendment period that might have
affected MRM county and control counties (counties in the Appalachian region without
MRM) are the financial crisis of the late 2000s and the ongoing opioid crisis. The financial
crisis of the late 2000s led to the Great Recession and severely impacted almost all of
North America, but disadvantaged areas tended to be hit harder (Thiede and Monnat
2016; Burgard and Kalousova 2015). It is therefore highly plausible that the effect of the
CAA amendment that led to increases in MRM by the late 2000s will be confounded with
the impact of the Great Recession in more impoverished and disadvantaged counties.

The opioid crisis began in the late 1990s. The opioid crisis has tended to hit rural regions
particularly hard (Compton, Jones, and Baldwin 2016; Keyes et al. 2014). We quantify the
urbanization of the counties via the rural-urban continuum code of 1983, ranging from 0
to 9 with very high numbers indicating overly rural. We note that more than 80 percent
of the MRM counties in the Appalachian region, has a rural-urban continuum code of 7 or
higher when compared to about 46 percentage of MRM absent counties in the area.

We consider a difference-in-differences study with 1979-1989 as pre-period and 1990—
2016 as post periods. The usual difference-in-differences method assumes that historical
events in the post period, such as the opioid crisis and the Great Recession, did not differ-
entially affect the exposed group (MRM counties) and control group. We will demonstrate
in simulation studies that when there is concern about a differential effect, multivariate
matching on covariates that might be associated with such a differential effect, e.g., socioe-
conomic characteristics, can reduce bias. First, we review previous research on available
methodologies for using matching in difference-in-differences studies.

1.3 Review of Available Methodologies

In this section, we compare and contrast several existing methodologies for conducting
difference-in-differences studies with multivariate matching. One concern in using matching
to construct a control group in a difference-in-differences study is regression to the mean
(RTM). In the careful analyses by Daw and Hatfield (2018), they have noted that when
the pre-period response level is matched on and is correlated with treatment assignment,
then matched studies are biased. This is because in the post-period outcomes of the units
both from the treatment and the matched control groups regress to their group means,
creating a superficial difference between the groups even when the null hypothesis of no
treatment effect holds. In our situation, we do not match with pre-period response levels
but match with covariates that we believe correlates with the differential impact of the post-
period historical event on the outcome and assume that these covariates are not related to
random fluctuations in the pre-period outcome. Daw and Hatfield (2018) discuss that their
study does not consider the type of matching we consider and that the type of matching
we consider might be beneficial: “In this study, we do not consider the possibly beneficial
application of matching on covariates that differ between the groups and are correlated
with future outcome trends (i.e., matching on confounders in the difference-in-difference
sense). Instead, we consider matching on covariates that are correlated with levels of the
outcome (or are the outcome level itself), which is the source of the regression to the mean
bias we discuss here.” To illustrate this point further, we conducted a version of the second
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numerical setting with no matching, full matching, and matching with pre-period responses.
The results are reported in Table 8 and discussed further in Appendix B.

There is work on using propensity scores in matching in difference-in-differences studies
(Stuart et al. 2014) but it does not fully address the setting that motivates our work.
Our version of matching involving rank—-based Mahalanobis distance with calipers on the
propensity score has not been studied in the DID framework. In Stuart et al. (2014),
the weights are obtained by estimating the propensity scores of being in any of the four
groups given the covariates. The four groups in their work are defined by both time and
intervention status. Because of the formulation, the authors’ have noted that their work
is more appropriate when the composition of each group may change over time. Their
work requires an exogeneity condition on the covariates, which is not essential in our work.
Furthermore, the motivation of our work is different, being that potential historical events
interacting with groups, not mentioned in their work.

Prognostic scores are an alternative to propensity scores that summarize covariates’
association with potential responses (Hansen 2008). A drawback of prognostic score based
methods for our setting is that the model for the prognostic score is based only on the
control group. We think this would be relevant for us, as seen even from our simulation
settings when the outcome model for the treatment and the control groups are different.
Additionally, we have not found a thoughtful study of the prognostic score-based methods
in the DID literature to make a careful comparison.

The synthetic control methodology constructs a weighted combination of control units
whose weighted pre-period observations and covariates are close to a treated unit (Abadie,
Diamond, and Hainmueller 2010). Generally, researchers have used the synthetic control
method when there are a small number of treatment units and multiple observations in the
pre-period. The three original examples from Abadie et al. [2003, 2010, 2015] and the R
package Synth (Abadie, Diamond, and Hainmueller 2011), deal with one treatment unit
(Basque Country, California, and West Germany respectively) with about twenty or more
pre-treatment outcomes. In theory, synthetic control may be applied to multiple treatment
units. According to Abadie (2020), “estimation with several treated units may carry some
practical complications.” We refer the interested readers to Section 8 of an excellent review
by Abadie (2020). We have applied matching with many treated units, e.g., the MRM
application to which we apply matching has 32 treated counties. And matching seeks
to find control units which are individually close to treated units rather than construct
a weighted combination of control units. Another difference between the synthetic control
methodology and the matching approach we study in this paper is that the synthetic control
methodology uses past outcomes in addition to covariates to construct the synthetic control.
The use of past outcomes can make the synthetic control method vulnerable to bias from
regression to the mean (Illenberger, Small, and Shaw 2020; see also the discussion in Kaul
et al. (2015)).

Bernal, Cummins, and Gasparrini (2018) suggests the controlled interrupted time series
(ITS) or CITS to overcome the disadvantage that a basic ITS has, namely, “can not ex-
clude confounding due to co-interventions or other events occurring around the time of the
intervention.” The authors suggest that the idea is to discover a control series that limits
the impact of historical bias. Our approaches are “complementary” to this in the sense that
we aim to find a control paired unit so that the bias due to historical event is alleviated. As
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discussed above, synthetic control can be thought of a way of finding an imaginary compar-
ative unit, and the authors have further noted in a letter to the editor (Bernal, Cummins,
and Gasparrini 2019) that indeed that the use of synthetic controls is complementary and
“not an alternative approach to CITS.” Linden (2018) discusses the use of synthetic control
in ITS. Likewise, one can use our version of matching in conjunction with ITS.

2. Effect of Mountaintop Removal Mining on Mortality
2.1 Methods

We consider the effect of MRM on age-adjusted all-cause and respiratory disease-specific
mortality rates per 100,000 persons obtained from the Centers for Disease Control and
Prevention (CDC). We use 1979-1989 as the before period and after periods divided into
1990-1998 and 1999-2016. The before period was chosen to be a period in which mor-
tality rates were relatively stable and the after period was divided into two parts because
MRM may have lagged effects (Hendryx and Holland 2016). The time periods chosen were
also selected based on data availability considerations; see Section 2.3. We consider the
Appalachian counties as defined by the Appalachian Regional Commission (2018). The
treated group is the 32 counties where there was MRM between 1994-2006 using Esch and
Hendryx (2011)’s classification based on satellite imagery and the control group is the 396
counties without MRM between 1994-2006.

The MRM counties differ considerably from the controls in the before period with lower
income, higher poverty and lower education; see Table 1. Historical events in the after
period that might affect health include the Great Recession and opioid crisis. The opioid
crisis and the economic recession might interact with the factors that differ between the
MRM and control groups in affecting health. For example, the opioid crisis may be differ-
entially distributed between the treated and control counties threatening the counterfactual
assumption of parallel trends in the post period. If one can explain the differential distri-
bution of the opioid crisis across the two groups by measured factors, then one can hope to
mitigate this problem. If possible, it would be useful to test how predictive our matching
variables are of the distribution of the post-period factor among the treatment groups to
assess whether matching has helped to reduce differences in the post-period factor. Unfor-
tunately we do not have available data on the distribution of the opioid crisis in different
counties. Another way in which the opioid crisis might interact with the factors that differ
between the MRM and control groups in affecting health is that the opioid crisis may have
the same distribution between the treated and control counties, but counties with poorer
populations may have fewer resources to cushion the blows from it and be harder hit by it.
If one can match on the poverty level of a county, then one can hope to mitigate potential
violations of the counterfactual assumption of parallel trends in the post-period from poorer
populations having fewer resources to cushion blows from the opioid crisis.

We constructed a more closely matched control group by pair matching MRM to control
counties using rank—based Mahalanobis matching with calipers on the propensity score
(Rosenbaum 2010), using the optmatch package in R (Hansen and Klopfer 2006). The
fourth column of Table 1 shows the matched controls are much closer to the MRM counties
on the covariates. We tried matching each MRM county to two control counties, but the
balance was not acceptable (see Table 2).
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2.2 Counterfactual Assumptions for Identifiability

We index the N Appalachian counties by ¢ where ¢ = 1,..., N, and let the treatment, that
is, the prevalence of MRM, be indicated by W; taking values in {0, 1}. Let p = 0 denote the
before period and p = 1 denote the after period. Let Yj,(1) denote the potential outcome
under treatment, and Y;,(0) denote the counterfactual outcome in the absence of treatment.
Let X;, denote a vector of d-dimensional covariates. In our setup, we assume that all the
counties considered have observations available in both periods. We assume that there is
no interference between the counties and that the stable unit treatment value assumption
(SUTVA) holds.

We are interested in estimating the population average treatment effect for the treated
(PATT) in the after period, in notations, E{}/ill/vizl(l) - Y}{Vi:l(())}, the empirical analogue
for which is m Yiwi—11Yi1(1) — Yi1(0)}. The difficulty in this case is that the

quantity Y?{Vi:l(O) is unobserved. Since in the pre-period, the treatment is not applied,
if there is a model based framework, we can potentially apply a modeling approach to
find an estimator ﬁWi_l(O). However, in the absence of a good available model due
to our failure to anticipate all future events, and to enable model-free estimation, the
information on the control counties are utilized. When the parallel trend assumption (i.e.,
the trends of the treated and control groups would have been parallel in the absence of

treatment) holds that E; (}QI{Vizl(O)—)/igVizl) =F; (}/iIfVFO(O)—Yig/i:O) upholds, this enables
—~W;=1 — — _ o Lo
Y; 0) := YZ-‘(;V’_l +{Y"=%0) — YIV"=%}, where E;(-) indicates that the expectation is

taken with respect to the post period. Note that Y,II/V‘ =0 (0) is observed.

Now suppose that there is a historical event H that concurs with the treatment under
study between the pre and post periods. We observe the outcomes Y;‘IVFI’H:l(l) and
Y;‘I/V’:O’H:l (0) in the after-period. In presence of the unavoidable historical event, we still
aim to estimate the PATT that is, E{Y;‘fvi:l’H:l(l) — Yilf/i:l’H:l(O)}. However, even
if the the counterfactual parallel trends assumption would have held in the absence of
the historical event, we can no longer generally assert that Ey (Y i=LH=1g) Y=t =
El(Y;YV’:O’H:l(O) - YZ-I(;VFO) holds if there is a differential impact of the (future) historical
event. To remove such a differential impact of historical events, ideally we would like to

form a matched pair (i,i’) such that W; = 1, W = 0 and El(Y;‘fV’:l’H:l(O) - Yigvizl) =
W,=0,H=1
Er(Yy,

require that

(0) — YZ.,VOVZ"ZO) holds. In terms of the familiar unconfounded assumptions we

B (YA=H0) — Yo |Wi = 1, Xj0) = E1(Y{'=1(0) — Yio| Xi0) (1)

holds. Different matching strategies are discussed in the numerical experiments section and
is implemented in the MRM study. Our modified difference-in-differences estimator for the
PATT, aided by matching, is formulated as m 2 G): WFLWH:O{(YZ{{:l(l) —Yio) —
(Y;H=1(0) — Yi10)}. For matching based on assumption (1) to be able to eliminate bias, we
need the assumption of overlap or probabilistic assignment of treatment, where every unit
in the pre-period has a positive chance of being assigned as a treatment unit or a control
unit in the post-period.

We discuss the comparison of our matched DID assumption to the assumption of un-
confounded assignment (Imbens and Rubin 2015), which is the assumption that treatment
is independent of potential outcomes given the measured covariates. A stronger version
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of the usual DID methodology assumes that the post-period counterfactual outcome levels
conditional on the pre-period outcomes are independent of the treatment assignment. The
stronger version of our assumption is that the same holds but in the absence of any conjunc-
tive historical events, in notations (YZ=0(1) — Y;o, V:=0(0) — Y;) LW}, in the notation of
Dawid (1979). In the presence of historical event we modify the unconfounded assignment
assumption to (YZ{{:l(l) — Yo, YZ-{IZI(O) —Yi0) LLW;| X0, where recall that X;o is the vector
of d-dimensional covariates at time period zero.

2.3 Implementation

Outcome. Our outcome is age—adjusted all-cause mortality rates and age-adjusted mortality
rates by diseases of the respiratory system obtained from the CDC. Mortality rates are per
100,000 persons and are age—adjusted to the 2000 US population. The CDC WONDER
website’s compressed mortality files enable mortality rates to be calculated for 1968-1978,
1979-1998, and 1999-2016, or any subset of the years within each of these time periods. We
chose to make 1979-1989 the before period because mortality rates were relatively stable
in this period after declining from 1968-1978 (Hendryx and Holland 2016). We divided
the after period into the two periods 1990-1998 and 1999-2016 because MRM might affect
mortality with a lag (Hendryx and Holland 2016).

Treated and Control Groups. The counties we considered are the Appalachian counties
as defined by the Appalachian Regional Commission (2018). We used Esch and Hendryx
(2011)’s classification of which counties have MRM which was based on satellite imagery.

Covariates. Lengerich et al. (2004) identified education, isolation, access to health care,
health beliefs, and kinship as factors affecting mortality in Appalachia (Lengerich et al. 2004,
2006). We sought to control for some of these factors by matching on the following county-
level covariates: income, poverty rate, demographics (percent white and percent female)
and education (percent with no high school degree, percent with bachelors degree), poverty
rate and rural-urban continuum code. Median income, poverty rate, percent white, percent
female, percent with no high school degree and percent with bachelors degree were taken
from the 1990 US Census. Our pre-period is from 1979-1989, and the two post-periods are
1990-1998 and 1999-2016. Therefore we have chosen the 1990 census data for our covariates.
We checked the change in distribution in poverty rates, one of the socioeconomic covariate,
displayed in Figure 4. Particularly in the control counties, there does not seem many visual
differences from 1980 to 1990 to 2000 to 2010. Furthermore, the treatment may directly
or indirectly affect some covariates, such as employment or education. We want to balance
the treatment and the control counties in these covariates at or around the time when the
treatment commenced. The rural-urban continuum code was taken from the 1983 county
rural-urban continuum codes from the USDA Economic Research Service where 9 is most
rural and 0 is most urban (Rural Urban Continuum Codes 2018).

Analysis. We used the R package optmatch (Hansen and Klopfer 2006) to pair match
MRM counties to control counties on the covariates using rank—based Mahalanobis matching
with a caliper on the logit of the propensity score of 0.2 x the standard deviation of the
logit of the propensity score, following the matching method suggested in Chapter 8 of
Rosenbaum (2010). We tried matching each MRM county to two control counties, but the
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balance was not acceptable, e.g., the standardized difference for poverty rate was 0.49; see
Table 2.

We made inferences about the treatment effect from the matched pairs data as follows.
Let y; for the ith matched pair be the difference between the difference of the MRM county’s
after and before outcome (age adjusted mortality rate per 100,000) and the difference of
the control county’s after and before outcome. Each y;, i = 1,...,32 is an estimate of the
treatment effect for the ith matched pair. We model the y; as independent and identically
distributed normal random variables with mean equal to the treatment effect and find a
confidence interval for the treatment effect by inverting the t—test. For the unmatched data,
we make inference for the treatment effect by regressing the outcome for each county in each
time period on a time period dummy, a fixed effect for the county, and a dummy variable
for whether MRM was being used for the county in the time period (the coefficient on this
variable estimates the treatment effect) (Imbens and Wooldridge 2009).

2.4 Results

The bottom panel of Table 1 shows the difference-in—differences estimates for the effect of
the increase in MRM starting in 1990 on age—adjusted mortality rate (per 100,000) using
all controls and matched controls. For the later after period (1999-2016), using all controls,
we estimate the increase in MRM increased the mortality rate by 94 (95% CI: 62, 126)
while using closely matched controls, we estimate it increased the death rate by 28 (95%
CI: -8, 64). The closely matched control analysis suggests the all controls analysis may have
overstated the effect of MRM but also suggests further study of MRM’s effect on health
is warranted, with a 95% confidence interval that contains substantial adverse effects even
though it also contains no effect and small beneficial effects.

Table 3 shows the difference—in—differences estimates for the effect of the increase in
MRM starting in 1990 on age-adjusted mortality rate (per 100,000) from diseases of the
respiratory system using all controls and matched controls. For the later after-period (1999—
2016), using all controls, we estimate the increase in MRM increased the respiratory cause-
specific mortality rate by 9.70 (95% CI: 2.66, 16.76) while using closely matched controls,
we estimate it increased the respiratory cause-specific death rate by -2.38 (95% CI: -12.78,
8.01).

3. Simulation Study

We consider two simulation setups aimed to reflect what may happen in a simplistic real—
data scenario. In both the situations the observed effect or response and the incidence of
the treatment are related to the covariates of the subjects, sometimes fully observed while
sometimes only partially noted. We describe the data generating process and explain the
numerical results in the rest of this section.

3.1 Simulation 1

In the first setting we assume that the vector of covariates of the control population is gener-
ated from Z¢ ~ N(pc, X¢) with pe := (1,...,1)T and X¢, the variance-covariance matrix
is such that the variance is set to 1, and the covariance is assumed to each take a value 0.2.
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This may be viewed as a weak—positive correlation between the covariates. The covariates of
the treatment population are then assumed to come from Zp, ~ N(ar,uc, Xrr), with our
choice of ap, := 1.25 and X7, := Y. In words, the covariates of the treatment population
appear to come from a right—shifted Gaussian curve, with substantial overlap with that of
the covariates of the control group. Further, the response for the control and the treatment
subjects are assumed to be structured as below for a two time—period framework,

Yo,it = Bo,c + Br,c * T + g4,

Yrrjt = Borr + Broe * T + €51

Where T := 0 indicates the before treatment or event period, and 1" := 1 for the after period
and €;; and €j; denote independent standard Gaussian variables. In our specific simulation
setting we choose By c = Porr = 0. Finally the slope variables relate to the covariates
by a linear transformation, specifically, 51 ¢ = BT Zq and Birr == BT Zr, + A, with the
entries of § ~ Unif[2,3] and A := 2. The goal for us is to recover the treatment effect A
from the observed responses when a) all the covariates are known, and b) only half of all
the covariates are observed and are available for matching. We fix the treatment and the
control sample sizes to 32 and 320 respectively. The number of covariates is varied within
{2,4,8}. For the covariate size of eight, a stylistic plot of the setup is shown in Figure 2.

Is a A = 2 a reasonable effect size to recover? We perform a back-of-the-envelope
calculation for the setting with the covariate size of two. Our post-period outcome is defined
as Y = By +B1*{T = 1} +¢ where By = 0. The slope coefficient 3; = 7 Z¢ for the control
group and for the treatment group is 81 = 87 Z7, + A where Z¢ and Zp, are the covariates
of the respective groups. Both Z¢ and Zp, are generated from a multivariate normal with
variance-covariance matrix > with diagonal entries all 1 and off-diagonal entries as 0.2.
The entries of the vector are independently and identically distributed as 5 ~ Unif[2, 3]
and A = 2 is a constant. We note that for each of the treatment or the control groups
for the post-period Var(Y) = Var(87Z) + 1. Note that by the law of total variance
Var(BT2) > E(Var(B'Z)|8) = E(B"Var(Z)3). Suppose we work with the minimum
covariate size in the performed simulation that is covariate size of 2. Denote 8 = [Uy, Us]”
where Uy, Uy ~ Unif[2,3]. Therefore Var(12) > E(U2 + U2 +2-0.2-Uy - Us) = 15.17
and Var(Y) > 16.17. Therefore the standard deviation of the post-period responses in
each groups are greater than 4, and in the convention of effect sizes see, for example,
Sawilowsky (2009), our study choice would be of medium to small effect size. This involves
thus a challenging setting even in the best-case scenario. Given the approximations and
conservativeness of the calculation, we have tried for A = 6, and the performance is almost
similar.

All results are reported by implementing 1000 replications of the above—explained set-
ting. In this setting, we hope that the bias will be much less when matching with all the
available covariates, and less when matched with only half of the available covariates. In
addition to reporting the mean and the median estimates, we also report the ‘coverage pro-
portion,” the ratio of the 1000 replications in which the constructed 95% confidence intervals
contained the true A.

In Table 4 we note that with an increase in the matching of the covariates, the mean
and the median estimates are closer to the truth. The coverage proportion also greatly
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improves with matching. Even with partial matching, the coverage proportion is above
0.85, a considerable improvement over being not matched at all. Note that the mean and
the median estimates are both biased from the truth when there is no matching and when
matched with only half of the covariates. Furthermore, the general difficulty of the problem
is magnified by the dimension of the covariates, given that the sample sizes are fixed. In
Table 5 we fix the number of covariates to 4 and vary the equicorrelation of covariates within
{0.1, 0.05, 0}. The additional observation to note here is that the more uncorrelated the
variables are, the less well matching with partial covariates performs.

3.2 Simulation 2

In this setting we assume that both the control and the treatment covariates marginally
arise from Z ~ N(p,Y), or from the same covariate population with u := (1,...,1)T and
Y is the same as that defined in Experiment 1. Here, however, the conditional chance
of being selected in the treatment is related to the covariates by P(Tr = 1|Z) := 1 —
®(pTZ). In this setting, the entries of 3 ~ Unif[.2,.3], so that only about 10% of the
population is therefore allocated to treatment. Now we model the potential impact of
a historical event, by considering that a historical event has an impact with a chance
P(Historical Event Impacts = 1|Z) := 1 — ®(87 Z). Here again, the parameters are chosen
such that about 10% of the population is on an average impacted by the historical event.
Note, though the two chances greatly depend on the covariates, in any realization the
treatment population and the population being impacted by the historical event may be
the same or may be entirely different. We begin with 400 subjects in total, which includes
both control and treatment. The size of the available covariates is fixed at 8.

The responses are also generated differently from what we did in Experiment 1. In the
before—period, the responses for both the control and the treatment are from a standard
Gaussian. In the after—period, in the absence of an impact of the historical event and in the
absence of the treatment, the response is again from a standard Gaussian. If the historical
event has an impact, but still in the absence of a treatment, the response is shifted from
the standard Gaussian by an amount of 4. If the historical event does not have an impact
but the treatment is applied, the response deviates from a standard Gaussian by A. In
the presence of both, that is, both that the treatment is applied and the historical event
has an impact, the response drifts from the standard Gaussian by an enlarged—or could be
diminished—amount of § + A. Our goal is to obtain an accurate estimate of the treatment
effect A which teases apart the effect of the treatment from the impact of the historical event
and the noisy responses that is, distorted with Gaussian random variables. Note though
that we do not have direct information on whether the historical event had an impact or not,
or its effect size, other than what we can retrieve from the observed responses and the given
covariates. Here again, we study the setting for when a) all the covariates are available for
matching, and b) only half of all the covariates are available to match. The specific choice of
A = —2 and that for ¢§ is varied in {—2, —4, —6} to reflect the size of impact of the historical
event. Table 6 reports a summary of the results of 1000 replications. Here again, we can
visualize a stylistic figure similar to figures 1 and 2, where the usual DID estimator will be
on the order of A+ ¢, whereas the estimand of interest is A. A multivariate covariate-based
matched estimator will approximately equate the estimand.
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In this setting, we hope that the bias will be lessened by matching in finite samples.
Asymptotically we expect that the bias is removed with full matching. To see that, we
provide some heuristics. Matching the i’th treatment subject to the j'th control implies
matching p; := P(H; = 1|Tr; = 1,%;) and p; := P(H; = 1|Tr; = 0,Z;), where the event
{H; = 1} indicates that there is an impact on the i’th subject by the historical event. The
amount of unit bias is given by (1/n)%;{H; —p;} — (1/n)E;{H; —p;} + (1/71)2%2;;):(1,1){% —
p;}, where n denotes the number of treatment samples matched to one unique control
each, H; and H; indicate the realized (unknown to the analyst) values of the impact or
nonimpact of the historical event, and the enumeration (i,7) = (1,1) to (n,n) stands for
(4,7) = (1,1),(2,2),...,(n,n). We assume that as a result of matching, we are able to
obtain (1/n)EEZ£):(M){pi — p;j} = o(1), where the asymptotics is in the sense that a large
number of controls are increasingly available to match to. The independence and mean zero
characteristics of {H; — p;} and {H; — p;} then ensure that both (1/n)¥;{H; — p;} — 0
and (1/n)X;{H; — p;} — 0 hold almost surely. Combining these three terms eliminates the
bias asymptotically. This is empirically demonstrated in Table 7 where the effective sample
size is increased to about twelvefold to that of the treatment sample size in Table 6 in the
setting described above.

Table 6 provides some more insights in addition to largely following the patterns of
Tables 4 and 5. The coverage proportion for the partial matching hovers around 0.80, that
is, away from the desired value of 0.95, while the coverage proportions for the unmatched
analysis is much worse, ranging from 0.06 to 0.49. Here, note the bias is not completely
removed, in finite samples by matching but it is reduced. Better matching strategies,
perhaps using more structure of the generating process may reduce the bias with a potential
increase in the variance. The performance in the larger sample size of Table 7 with full
matching is reasonable with coverage proportions above .9 and nearly unbiased estimates.

4. Conclusion and Limitations

Difference—in—differences analysis with a control group that differs considerably from a
treated group is vulnerable to bias from historical events that have different effects on
the groups. Constructing a more closely matched control group by matching a subset of
the overall control group to the treated group may result in less bias. For a difference—in—
differences analysis of the effect of mountaintop removal mining on mortality, we constructed
a more closely matched control group and found a 95% confidence interval that contains
substantial adverse effects along with no effect and small beneficial effects.

Our matching methodology is very general and can be applied whenever there is a
suspicion that other events are impacting both the control and the treatment groups. The
other requirement is to have covariates available for matching that allows a level playing field
for the comparisons of the desired outcomes. There are several instances of such studies
in the literature. One, an investigation of the impact of a vacant lot greening program
in Philadelphia on health and safety outcomes (Branas et al. 2011). Another is a study
on estimating the effect of the repeal of comprehensive background check laws on firearm
homicide and suicide rates in Indiana and Tennessee (Kagawa et al. 2018). And a third
study of the impact of the revised women, infants, and children (WIC) food package on
maternal nutrition during pregnancy and postpartum (Hamad et al. 2019).
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Our study has limitations. We were unable to obtain pre-treatment period measures of
health, such as smoking and obesity. We also did not match on other factors that might
affect mortality in Appalachia, such as isolation, access to health care, employment, health
beliefs, and kinship (Lengerich et al. 2004). We considered a county to be a control unit
if the county itself did not have MRM, but counties adjacent to MRM counties might
suffer spillover effects from environmental pollutants. Such spillover effects would bias our
estimate of MRM’s effects on mortality downwards.
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Appendix A. Test for Parallel Trend in the Pre-Period

In the standard DID model (we refer to an excellent review by Imbens and Wooldridge,
2009) the outcome for observation ¢ in the absence of the intervention is formulated as

Y0)=a+ 8 -T;+v G; + ¢,

where T; = {0, 1} refers to the time indicator, and G; = {0, 1} refers to the group indicator
where the treatment group is coded as 1. In the presence of the intervention, researchers
model the outcome as

Yi(1) = Yi(0) + 7aia-

One estimates the parameter 74,4 by regressing the observed outcome on the time, group,
and their interaction indicator, namely,

YVi=a+pi-Ti+v-Gi+1gia-Ti - Gi + €.

We implemented a parallel trend test through visual exploration and a test of significance
of 74;4 in the pre-period. The p-value of the coefficient is 0.381, indicating statistically not
significant. In Figure 3, we plot the mean outcome of total mortality for the four periods.
The four periods are 1968-1978, 1979-1989, 1990-1998, and 1999-2016. Qualitatively, we do
not see evidence that parallel trends is violated in the pre-periods that is between 1968-1978
and 1979-1989, and the larger than the usual nominal level of p-value supports that.

Appendix B. Matching on Outcomes and Regression-to-the-Mean

In Table 8, we follow a part of the setting of numerical experiment 2. However, we demon-
strate the performance of our proposed (full) multivariate covariate-based matching when
compared to the matching by pre-treatment outcomes. This is an important topic as
matching with the pre-treatment outcomes may display a regression-to-the-mean (RTM)
phenomenon. We make one change to make the point. We simulate S, ~ Unif[.2,.3], and
for every response at all time points the outcomes are defined as Yl; =Y+ BZ;UZH, where
Y;: are the outcomes as defined in Section 3.2. Since we do not change the covariates with
time we may as well write Z;y0 = Z;1 =: Z;.

We observe in Table 8 that matching on the pre-period outcomes gives us worse or more
biased estimators than not matching at all. The reasoning is the following. By design,
our treatment units, on average, have very low values of the covariates. The pre-period
responses involve matching the response values at the initial time, which also by design
will be lower for the treatment units. The matched control units, therefore, to be well-
matched with outcomes, have to either have very low covariates or very low realizations in
the Gaussian noise, that is, the random component, or a combination of the two aspects.
This is critical to understanding why large bias occurs. Since there is an aspect of the
matching that involved the larger-than-usual random component of the outcome in the pre-
period of the control units, in the post-period, most of them will regress to its expected
value. The superficial difference created by the regression contributes to the bias and is,
therefore, systematically more biased than not matching at all. We do not recommend
matching units based on the outcomes.
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Figure 1: Stylized plot of data from a comparative interrupted time series design. The dotted line
shows the assumption that the difference—in—differences (DID) estimate makes about the
treatment group’s counterfactual mean in the absence of the treatment.
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Table 1: Covariate balance between mountaintop removal mining (MRM) counties and all

control counties (all counties in the Appalachian region that do not have MRM)
and pair matched control counties as well as age-adjusted mortality rates (per
100,000; adjusted to 2000 U.S. population) and difference—in—differences estimates
of effect of increase in MRM starting in 1990 on age adjusted mortality per 100,000
persons using all controls and pair matched controls. The covariates matched on
are the rural-urban continuum code in 1983 (the last year before 1990 in which
it was measured), which ranges from 0 to 9 with 9 being the most rural (Rural
Urban Continuum Codes, 2018), and the following county—level variables measured
at the end of the before period from the 1990 US Census: median income, poverty
rate, percent white, percent female, percent with no high school degree, percent
with high school degree, and percent with bachelors degree. The before matching
(Bf. Mt.) standardized difference (Stand. Diff) is the differences in before matching
group means divided by the before matching within group standard deviation
(specifically the square root of the average of the before matching within group
variances). The after matching (Af. Mt.) standardized difference (Stand. Diff)
is the differences in after matching group means divided by the before matching
within group standard deviation (Rosenbaum and Rubin 1985).

Covariates
MRM Counties | All Controls | Matched Controls Stand. Diff.
Bf. Mt. | Af. Mt.
Income (Median) 8,111 10,291 7,913 -1.38 0.12
Poverty Rate (% ) 31.1 18.1 30.6 1.78 0.06
White (% ) 97.8 93.0 98.0 0.59 -0.03
Female (% ) 51.4 51.4 51.5 -0.03 -0.13
No High School Degree (% ) 50.4 37.9 51.2 1.45 -0.10
High School Degree (%) 41.8 51.3 41.7 -1.41 0.02
Bachelors Degree (% ) 7.8 10.8 7.1 -0.74 0.17
Rural-Urban Continuum Code 7.2 5.8 7.5 0.69 -0.17
Outcomes
Age Adjusted Mortality Rate

1979-1989 1,141 1,022 1,078

1990-1998 1,115 976 1,056

1999-2016 1,134 921 1,042

Difference-in-Differences Estimates (95% CI) of Treatment Effect
Treatment Period All Controls | Matched Controls
1990-1998 20 (-1, 41) -4 (-32, 23)
1999-2016 94 (62, 126) 28 (-8, 64)
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Table 2: Covariate balance between mountaintop removal mining (MRM) counties and
matched control counties when two control counties were matched to each MRM
county. The standardized difference is the differences in after matching group
means divided by the before matching within group standard deviation (specifi-
cally the square root of the average of the before matching within group variances).

Covariate MRM Counties | Matched Controls | Standardized Difference
Income (Median) 8,111 8,526 -0.26
Poverty Rate (% ) 31.1 27.5 0.49
White (% ) 97.8 97.8 0.00
Female (% ) 51.4 51.7 -0.32
No High School Degree (% ) 50.4 47.5 0.34
High School Degree (% ) 41.8 44.5 -0.40
Bachelors Degree (% ) 7.8 8.0 -0.06
Rural-Urban Continuum Code 6.7 6.4 0.22

Table 3: Age-adjusted mortality rates (per 100,000; adjusted to 2000 U.S. population) by
diseases of the respiratory system and difference-in—differences estimates of the
effect of the increase in MRM starting in 1990 on age-adjusted mortality by diseases
of the respiratory system per 100,000 persons using all controls and pair-matched

controls.

‘ MRM Counties ‘ All Controls Matched Controls
Age Adjusted Mortality Rate by diseases of the respiratory system
Time Period

1979-1989 114.5 80.2 94.8
1990-1998 132.4 97.0 116.0
1999-2016 143.4 99.5 126.1

Difference-in—Differences Estimates (95% CI) of Treatment Effect
All Controls Matched Controls

Treatment Period

1990-1998
1999-2016

1.16 (-3.98, 6.31)
9.70 (2.66, 16.76)

317 (-11.37 5.02)
-2.38 (-12.78, 8.01)
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Figure 2: A stylized plot of setting 1 of our numerical experiments for a covariate size of
eight. The vanilla DID estimate ignores the impact of historical events interacting
with groups and is biased. The dotted line shows the assumption that the matched
estimator makes about the treatment group’s counterfactual mean in the absence
of the treatment. The matched estimator is less biased.
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Table 4: Results for the first numerical experiment in setting 1 for the true difference—in—
differences effect size of value A = 2. We used the R package optmatch to pair
match treatment to control subjects using the rank—based Mahalanobis distance
of the covariates with a caliper on the propensity score of 0.2 x the standard
deviation of the logit of the propensity score. The acronyms SD, MAD, and CI
stand for standard deviation, median absolute deviation, and confidence interval
respectively. The entries are rounded to two decimal places.

Proportion of Covariates Matched

None Half Full
Number of Covariates = 2
Mean (SD) 3.24 (0.77) 2.53 (0.73) 2.01 (0.37)
Median (MAD) 3.25 (0.73) 2.51 (0.75) 2.02 (0.38)

Coverage proportion (Length of CI) 0.63 (3.00) 0.90 (2.89) 0.95 (1.51)
Number of Covariates = 4

Mean (SD) 448 (1.21) 2.83 (1.03) 2.03 (0.55)
Median (MAD) 4.47 (1.21) 2.87 (1.03) 2.03 (0.52)
Coverage proportion (Length of CI) 0.46 (4.72) 0.87 (4.06) 0.95 (2.20)
Number of Covariates = 8

Mean (SD) 7.01 (2.04) 3.29 (1.56) 1.89 (1.11)
Median (MAD) 7.02 (2.08) 3.36 (1.52) 1.93 (1.07)
Coverage proportion (Length of CI) 0.32 (8.04) 0.87 (6.23) 0.97 (4.90)
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Table 5: Results for the second numerical experiment in setting 1 for the true difference—
in—differences effect size of value A = 2. We used the R package optmatch to pair
match treatment to control subjects using the rank—based Mahalanobis distance
of the covariates with a caliper on the propensity score of 0.2 x the standard
deviation of the logit of the propensity score. The acronyms SD, MAD, and CI
stand for standard deviation, median absolute deviation, and confidence interval
respectively. The entries are rounded to two decimal places. Values in bold in the
entries indicate the notable observations in addition to those noted in Table 4.

Proportion of Covariates Matched

None Half Full
Equicorrelation = 0.1
Mean (SD) 4.53 (1.11) 3.03 (0.95) 2.01 (0.50)
Median (MAD) 4.49 (1.14) 3.05 (0.95) 2.03 (0.48)

Coverage proportion (Length of CI) 0.37 (4.29) 0.83 (4.00) 0.96 (2.06)
Equicorrelation = 0.05

Mean (SD) 4.52 (1.06) 3.10 (0.98) 2.04 (0.49)
Median (MAD) 451 (1.06) 3.12 (0.96) 2.03 (0.45)
Coverage proportion (Length of CI) 0.32 (4.04) 0.82 (3.97) 0.95 (1.97)
Equicorrelation = 0

Mean (SD) 4.51 (0.98) 3.24 (0.99) 2.06 (0.46)
Median (MAD) 4.49 (0.99) 3.25 (0.94)  2.06 (0.45)
Coverage proportion (Length of CI) 0.25 (3.78) 0.77 (3.87) 0.95 (1.91)
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Table 6: Finite sample performances of the numerical experiment in setting 2 for the true
difference—in—differences effect size of value A = —2. The total number of sub-
jects is 400 with about 10% being treatment subjects. We used the R package
optmatch to pair match treatment to control subjects by the propensity score
metric using the information on the covariates. The acronyms SD, MAD, and CI
stand for standard deviation, median absolute deviation, and confidence interval
respectively. The entries are rounded to two decimal places.

Proportion of Covariates Matched

None Half Full

Impact of historical event § = -2

Mean (SD) -2.54 (0.31) -2.27 (0.39) -2.14 (0.40)
Median (MAD) 2,54 (0.31) -2.30 (0.39) -2.15 (0.41)
Coverage proportion (Length of CI) 0.49 (1.05) 0.89 (1.57) 0.92 (1.58)
Impact of historical event § = -4

Mean (SD) -3.09 (0.41) -2.54 (0.52) -2.25 (0.56)
Median (MAD) -3.09 (0.39) -2.54 (0.51) -2.26 (0.54)
Coverage proportion (Length of CI) 0.12 (1.24) 0.84 (2.08) 0.91 (2.11)
Impact of historical event § = -6

Mean (SD) -3.61 (0.57) -2.82 (0.68) -2.37 (0.72)
Median (MAD) -3.60 (0.56) -2.82 (0.67) -2.37 (0.73)

Coverage proportion (Length of CI) 0.06 (1.50) 0.79 (2.77)  0.90 (2.80)
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Table 7: Large sample performances of the numerical experiment in setting 2 for the true
difference—in—differences effect size of value A = —2. The total number of subjects
is 2000 with about 24% being treatment subjects. We used the R package opt-
match to pair match treatment to control subjects by the propensity score metric
using the information on the covariates. The acronyms SD, MAD, and CI stand
for standard deviation, median absolute deviation, and confidence interval respec-
tively. The entries are rounded to two decimal places. Values in bold in the entries
indicate the notable observations in addition to those noted in Table 6.

Proportion of Covariates Matched

None Half Full
Impact of historical event § = -2
Mean (SD) -2.19 (0.08) -2.07 (0.11) -2.02 (0.10)
Median (MAD) -2.19 (0.09) -2.07 (0.11) -2.02 (0.10)

Coverage proportion (Length of CI) 0.38 (0.32)  0.88 (0.40)  0.94 (0.40)

Impact of historical event § = -4

Mean (SD) -2.37 (0.11) -2.14 (0.13) -2.04 (0.13)
Median (MAD) -2.37 (0.11) -2.14 (0.12) -2.04 (0.12)
Coverage proportion (Length of CI) 0.05 (0.38)  0.80 (0.49)  0.93 (0.49)
Impact of historical event § = -6

Mean (SD) -2.56 (0.15) -2.22 (0.16) -2.08 (0.16)
Median (MAD) -2.55 (0.15) -2.22 (0.16) -2.08 (0.17)

Coverage proportion (Length of CI) 0.01 (0.46) 0.71 (0.61)  0.91 (0.61)
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Figure 3: Visual exploration of the parallel trend assumption in the control and MRM
counties in the Appalachian region.
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Table 8: A demonstration of finite sample performances of various matching strategies in
the numerical experiment setting 2 for the true difference—in—differences effect size
of value A = —2. The total number of subjects is 400, with about 10% being
treatment subjects. We used the R package optmatch to pair match treatment
to control subjects by the propensity score metric using the information on the
covariates. The acronyms SD, MAD, and CI, stand for standard deviation, median
absolute deviation, and confidence interval, respectively. We round the entries to

two decimal places.

Matching Strategies

None Proposed  To Pre-Period Outcome

Impact of historical event § = -2

Mean (SD) -2.54 (0.30) -2.12 (0.40) -3.15 (0.38)
Median (MAD) -2.55 (0.30) -2.11 (0.41) -3.14 (0.38)
Coverage proportion (Length of CI) 0.47 (1.05)  0.94 (1.61) 0.16 (1.53)
Impact of historical event § = -4

Mean (SD) -3.09 (0.40) -2.25 (0.54) -3.51 (0.52)
Median (MAD) -3.07 (0.41) -2.25 (0.54) -3.49 (0.53)
Coverage proportion (Length of CI) 0.11 (1.23)  0.92 (2.14) 0.22 (2.14)
Impact of historical event § = -6

Mean (SD) -3.60 (0.56) -2.35 (0.72) -3.87 (0.71)
Median (MAD) -3.59 (0.55) -2.33 (0.70) -3.85 (0.73)
Coverage proportion (Length of CI) 0.06 (1.47) 0.91 (2.75) 0.25 (2.76)
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Figure 4: Time evolution of poverty rates in the control and MRM counties in the Ap-
palachian region.
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