Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Polyaniline-carbon nanotube composites

  • Pandi Gajendran and Ramiah Saraswathi

Abstract

The key developments in polyaniline-carbon nanotube (PANI-CNT) composites are reviewed. Apart from in situ chemical polymerization and electrochemical deposition, a number of interesting approaches including the use of aniline functionalized CNTs and ultrasound/microwave/γ-radiation initiated polymerization have been used in the preparation of composites. The structure and properties of these composites have been investigated by a variety of techniques including absorption, infrared (IR), Raman, X-ray photoelectron spectroscopy methods, scanning electron and scanning probe microscopy techniques, cyclic voltammetry, and thermogravimetry. The experimental results indicate favorable interaction between PANI and CNTs. The CNT content in these composites controls their conductive, mechanical, and thermal properties. The most interesting characteristic is their easy dispersibility in aqueous solution. The performance evaluation studies of PANI-CNT composites in a number of applications including supercapacitors, fuel cells, sensors, and actuators are highlighted.


Conference

International Symposium on Novel Materials and Their Synthesis (NMS-III) and the 17th International Symposium on Fine Chemistry and Functional Polymers (FCFP-XVII), Novel Materials and their Synthesis, NMS, Novel Materials and their Synthesis, 3rd, Shanghai, China, 2007-10-17–2007-10-21


References

1. doi:10.1039/c39770000578, H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger. J. Chem. Soc., Chem. Commun. 578 (1977).Search in Google Scholar

2. T. A. Skotheim, R. L. Elsenbaumer, J. R. Reynolds (Ed.). Handbook of Conducting Polymers, 2nd ed., Marcel Dekker, New York (1998).Search in Google Scholar

3. P. Chandrasekhar. Conducting Polymers, Fundamentals and Applications: A Practical Approach, Kluwer Academic, Boston (1999).Search in Google Scholar

4. doi:10.1016/0379-6779(90)90050-U, E. M. Genies, A. Boyle, M. Lapkowski, C. Tsintavis. Synth. Met. 36, 139 (1990).Search in Google Scholar

5. doi:10.1016/0039-9140(91)80261-W, A. A. Syed, M. K. Dinesan. Talanta 38, 815 (1991).Search in Google Scholar

6. D.C. Trivedi. In Handbook of Organic Conducting Molecules and Polymers, H. S. Nalwa (Ed.), 2, Chap. 12, John Wiley, New York (1997).Search in Google Scholar

7. doi:10.1016/S0079-6700(97)00030-0, E. T. Kang, K. G. Neoh, K. L. Tan. Prog. Polym. Sci. 23, 277 (1998).Search in Google Scholar

8. doi:10.1016/S0079-6700(98)00008-2, N. Gospodinova, L. Terlemezyan. Prog. Polym. Sci. 23, 1443 (1998).Search in Google Scholar

9. doi:10.1016/j.jpowsour.2003.08.008, A. Malinauskas. J. Power Sources 126, 214 (2004).Search in Google Scholar

10. R. Gangopadhyay. In Encyclopaedia of Nanoscience and Nanotechnology, H. S. Nalwa (Ed.), 2, pp. 105-131, American Scientific Publishers (2004).Search in Google Scholar

11. S. Neves, W. A. Gazotti, M. A. D. Paoli. In Encyclopaedia of Nanoscience and Nanotechnology, H. S. Nalwa (Ed.), 2, pp. 133-152, American Scientific Publishers (2004).Search in Google Scholar

12. M. Wan. In Encyclopaedia of Nanoscience and Nanotechnology, H. S. Nalwa, (Ed.), 2, pp. 153-169, American Scientific Publishers (2004).Search in Google Scholar

13. G. G. Wallace, P. C. Innis, L. A. P. Kane-Maguire. In Encyclopaedia of Nanoscience and Nanotechnology, H. S. Nalwa (Ed.), 4, pp. 113-130, American Scientific Publishers (2004).Search in Google Scholar

14. doi:10.1016/j.mseb.2006.07.037, D. Zhang, Y. Wang. Mater. Sci. Eng. B 134, 9 (2006).Search in Google Scholar

15. doi:10.1007/12_075, J. Jang. Adv. Polym. Sci. 199, 189 (2006).Search in Google Scholar

16. doi:10.1351/pac200678010015, J. Huang. Pure Appl. Chem. 78, 15 (2006).Search in Google Scholar

17. doi:10.1038/318162a0, H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley. Nature 318, 162 (1985).Search in Google Scholar

18. doi:10.1038/354056a0, S. Ijima. Nature 354, 56 (1991).Search in Google Scholar

19. G. Kickelbick. Hybrid Materials: Synthesis, Characterization and Applications, Wiley-VCH, Darmstadt (2007).Search in Google Scholar

20. doi:10.1016/S0079-6700(97)00040-3, J. Anand, S. Palaniappan, D. N. Sathyanarayana. Prog. Polym. Sci. 23, 993 (1998).Search in Google Scholar

21. doi:10.1016/j.progpolymsci.2003.08.001, A. Pud, N. Ogurtsov, A. Korzhenko, G. Shapoval. Prog. Polym. Sci. 28, 1701 (2003).Search in Google Scholar

22. doi:10.1021/cm990537f, R. Gangopadhyay, A. De. Chem. Mater. 12, 608 (2000).Search in Google Scholar

23. M. Baibarac, P. G. Romero. J. Nanosci. Nanotechnol. 6, 289 (2006).Search in Google Scholar

24. doi:10.1071/CH06470, L. Dai. Aust. J. Chem. 60, 472 (2007).Search in Google Scholar

25. doi:10.1002/(SICI)1521-4095(199908)11:12<1028::AID-ADMA1028>3.0.CO;2-N, C. Downs, J. Nugent, P. M. Ajayan, D. J. Duquette, K. S. V. Santhanam. Adv. Mater. 11, 1028 (1999).Search in Google Scholar

26. doi:10.1016/S0008-6223(03)00067-8, I. A. Tchmutin, A. T. Ponomarenko, E. P. Krinichnaya, G. I. Kozub, O. N. Efinov. Carbon 41, 1391 (2003).Search in Google Scholar

27. doi:10.1021/cm021287x, M. Baibarac, I. Batlog, S. Lefrant, J. Y. Mavellec, O. Chauvet. Chem. Mater. 15, 4149 (2003).Search in Google Scholar

28. doi:10.1021/jp0651844, X. Bi, Z. J. Han, Y. Yang, B. K. Tay. J. Phys. Chem. C 111, 4125 (2007).Search in Google Scholar

29. doi:10.1039/b104009j, M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martinez, J. M. Benoit, J. Schreiber, O. Chauvet. Chem. Commun. 1450 (2001).Search in Google Scholar

30. doi:10.1016/j.synthmet.2005.03.012, M. R. Karim, C. J. Lee, Y. Y. Park, M. S. Lee. Synth. Met. 151, 131 (2005).Search in Google Scholar

31. doi:10.1021/la0104673, B. Valter, M. K. Ram, C. Nicolini. Langmuir 18, 1535 (2002).Search in Google Scholar

32. doi:10.1002/app.23068, X. Lu, J. Zheng, D. Chao, J. Chen, W. Zhang, Y. Wei. J. Appl. Polym. Sci. 100, 2356 (2006).Search in Google Scholar

33. doi:10.1002/pi.2046, X. Lu, D. Chao, J. Zheng, J. Chen, W. Zhang, Y. Wei. Polym. Int. 55, 945 (2006).Search in Google Scholar

34. (a) doi:10.1002/adfm.200304440, B. Zhao, H. Hu, R. C. Haddon. Adv. Funct. Mater. 14, 71 (2004);Search in Google Scholar

34. (b) doi:10.1021/ja042924i, B. Zhao, H. Hu. A. Yu, D. Perea, R. C. Haddon. J. Am. Chem. Soc. 127, 8197 (2005).Search in Google Scholar

35. doi:10.1016/j.polymer.2006.03.060, T. M. Wu, Y. W. Lin. Polymer 47, 3576 (2006).Search in Google Scholar

36. doi:10.1007/s00289-004-0321-x, B. Philip, J. Xie, J. Abraham, V. Varadan. Polym. Bull. 53, 127 (2005).Search in Google Scholar

37. B. Philip, J. Xie, J. K. Abraham, V. K. Varadan. Smart Mater. Struct. 15, N105 (2004).10.1088/0964-1726/13/6/N02Search in Google Scholar

38. doi:10.1002/adma.200390027, Z. Wei, M. Wan, T. Lin, L. Dai. Adv. Mater. 15, 136 (2003).Search in Google Scholar

39. doi:10.1021/ja063375e, Y. Ma, S. R. Ali, L. Wang, P. L. Chiu, R. Mendelsohn, H. He. J. Am. Chem. Soc. 128, 12064 (2006).Search in Google Scholar

40. doi:10.1016/j.carbon.2004.01.003, X. Zhang, J. Zhang, R. Wang, Z. Liu. Carbon 42, 1455 (2004).Search in Google Scholar

41. doi:10.1021/jp045934e, X. Zhang, Z. Lu, M. Wen, H. Liang, J. Zhang, Z. Liu. J. Phys. Chem. B 109, 1101 (2005).Search in Google Scholar

42. doi:10.1016/S0014-3057(02)00165-9, J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, X. Long, P. Li, A. S. C. Chan. Eur. Polym. J. 38, 2497 (2002).Search in Google Scholar

43. S. J. Park, S. Y. Park, M. S. Cho, H. J. Choi, J. Joo. Mol. Cryst. Liq. Cryst. 425, 299 (2004).Search in Google Scholar

44. doi:10.1016/j.synthmet.2005.02.011, Y. Yu, B. Che, Z. Si, L. Li, W. Chen, G. Xue. Synth. Met. 150, 271 (2005).Search in Google Scholar

45. doi:10.1021/jp053025z, M Panhuis, R. Sainz, P. C. Innis, L. A. P. Kane-Maguire, A. M Benito, M. T. Artinez, S. E. Moulton, G. G. Wallace, W. K. Maser. J. Phys. Chem. B 109, 22725 (2005).Search in Google Scholar

46. doi:10.1021/ma061587q, R. Sainz, W. R. Samll, N. A. Young, C. Valles, A. M. Benito, W. K. Maser, M. Panhuis. Macromolecules 39, 7324 (2006).Search in Google Scholar

47. doi:10.1002/adma.200601886, X. Zhang, W. Song, P. J. F. Harris, G. R. Mitchell, T. T. T. Bui, A. F. Drake. Adv. Mater. 19, 1079 (2007).Search in Google Scholar

48. doi:10.1021/jp060193y, H. Zang, H. X. Li, H. M. Cheng. J. Phys. Chem. B 110, 9095 (2006).Search in Google Scholar

49. doi:10.1021/cm061344c, M. G. Markoic, J. G. Matisons, R. Cervini, G. P. Simon, P. M. Fredericks. Chem. Mater. 18, 6258 (2006).Search in Google Scholar

50. H. Mi, X. Zhang, S. An, X. Ye, S. Yang. Electrochem. Commun. 9, 2859 (2007).Search in Google Scholar

51. doi:10.1016/j.compscitech.2005.12.030, K. P. Lee, A. I. Gopalan, P. Santhosh, S. H. Lee, Y. C. Nho. Comp. Sci. Technol. 67, 811 (2007).Search in Google Scholar

52. doi:10.1002/pola.21451, K. R. Reddy, K. P. Lee, A. I. Gopalan, M. S. Kim, A. M. Showkat, Y. C. Nho. J. Polym. Sci., Part A 44, 3355 (2006).Search in Google Scholar

53. doi:10.1039/b418835g, M. Wu, G. A. Snook, V. Gupta, M. Shaffer, D. J. Fray, G. Z. Chen. J. Mater. Chem. 15, 2297 (2005).Search in Google Scholar

54. doi:10.1016/S0008-6223(03)00359-2, J. E. Huang, X. H. Li, J. C. Xu, H. L. Li. Carbon 41, 2731 (2003).Search in Google Scholar

55. doi:10.1002/1521-3773(20020415)41:8<1353::AID-ANIE1353>3.0.CO;2-I, S. E. Kooi, U. Schlecht, M. Burghard, K. Kern. Angew. Chem., Int. Ed. 41, 1353 (2002).Search in Google Scholar

56. doi:10.1002/adma.200305129, K. Balasubramanian, M. Friedrich, C. Jiang, Y. Fan, A. Mews, M. Burghard, K. Kern. Adv. Mater. 15, 1515 (2003).Search in Google Scholar

57. doi:10.1016/j.ab.2005.06.007, F. Qu, M. Yang, J. Jiang, G. Shen, R. Yu. Anal. Biochem. 344, 108 (2005).Search in Google Scholar

58. doi:10.1002/elan.200503474, P. Santhosh, K. M. Manesh, K. P. Lee, A. I. Gopalan. Electroanalysis 18, 894 (2006).Search in Google Scholar

59. doi:10.1002/cphc.200700213, X. Zhang, W. Song, P. J. F. Harris, G. R. Mitchell. Chem. Phys. Chem. 8, 1766 (2007).Search in Google Scholar

60. doi:10.1016/j.elecom.2006.07.024, D. Wei, C. Kvarnstrom, T. Lindfors, A. Ivaska. Electrochem. Commun. 8, 1563 (2006).Search in Google Scholar

61. doi:10.1016/j.elecom.2006.09.008, D. Wei, C. Kvarnstrom, T. Lindfors, A. Ivaska. Electrochem. Commun. 9, 206 (2007).Search in Google Scholar

62. doi:10.1016/j.jpowsour.2005.07.046, V. Gupta, N. Miura. J. Power Sources 157, 616 (2006).Search in Google Scholar

63. doi:10.1016/j.electacta.2006.01.074, V. Gupta, N. Miura. Electrochim. Acta 52, 1721 (2006).Search in Google Scholar

64. doi:10.1016/j.diamond.2003.10.026, N. F. Anglada, M. Kaempgen, V. Skakalova, U. D. Weglikowska, S. Roth. Diamond Relat. Mater. 13, 256 (2004).Search in Google Scholar

66 doi:10.1002/pssa.200566188, N. F. Anglada, V. Gomis, Z. E. Hachemi, U. D. Weglikovska, M. Kaempgen, S. Roth. Phys. Status Solidi (a) 203, 1082 (2006).Search in Google Scholar

66. doi:10.1021/jp071848d, P. Gajendran, R. Saraswathi. J. Phys. Chem. C 111, 11320 (2007).Search in Google Scholar

67. Y. Lin, X. Cui. J. Mater. Chem. 16, 582 (2006).Search in Google Scholar

68. doi:10.1016/j.electacta.2005.06.041, P. J. Kulesza, M. Skunik, B. Baranowska, K. Miecznikowski, M. Chojak, K. Karnicka, F. Frackowiak, F. Beguin, A. Kuhn, M. H. Delville, B. Starobrzynska, A. Ernst. Electrochim. Acta 51, 2373 (2006).Search in Google Scholar

69. doi:10.1016/S0008-6223(98)00130-4, P. S. M. Shaffer, X. Fan, A. H. Windle. Carbon 36, 1603 (1998).Search in Google Scholar

70. P. Gajendran, R. Saraswathi. Unpublished results.Search in Google Scholar

71. G. Wu, L. Li, J. H. Li, B. Q. Xu. J. Power Sources 155, 118 (2006).10.1016/j.jpowsour.2005.04.035Search in Google Scholar

72. doi:10.1007/s10008-004-0589-7, D. J. Guo, H. L. Li. J. Solid State Electrochem. 9, 445 (2005).Search in Google Scholar

73. doi:10.1016/j.polymer.2006.05.059, E. N. Konyushenko, J. Stejskal, M. Trchova, J. Hradil, J. Kovarova, J. Prokes, M. Cieslar, J. Y. Hwang, K. H. Chen, I. Sapurina. Polymer 47, 5715 (2006).Search in Google Scholar

74. doi:10.1016/S0009-2614(01)00626-1, A. Hassanien, M. Gao, M. Tokumoto, L. Dai. Chem. Phys. Lett. 342, 479 (2001).Search in Google Scholar

75. doi:10.1002/adma.200400921, R. Sainz, A. M. Benito, M. T. Martinez, J. F. Galindo, J. Stores, A. M. Baro, B. Corraze, O. Chauvet, W. K. Maser. Adv. Mater. 17, 278 (2005).Search in Google Scholar

76. doi:10.1088/0957-4484/16/5/003, R. Sainz, A. M. Benito, M. T. Martinez, J. F. Galindo, J. Stores, A. M. Baro, B. Corraze, O. Chauvet, A. B. Dalton, R. H. Baughman, W. K. Maser. Nanotechnology 16, S150 (2005).Search in Google Scholar

77. doi:10.1021/jp0614897, Y. Ma, S. R. Ali, A. S. Dodoo, H. He. J. Phys. Chem. B 110, 16359 (2006).Search in Google Scholar

78. doi:10.1002/1521-4095(20021016)14:20<1480::AID-ADMA1480>3.0.CO;2-O, H. Zengin, W. Zhou, J. Jin, R. Czerw, D. W. Smith, J. L. Echegoyen, D. L. Carroll, S. H. Foulger, J. Ballato. Adv. Mater. 14, 1480 (2002).Search in Google Scholar

79. doi:10.1016/j.diamond.2004.11.035, S. Lefrant, M. Baibarac, I. Baltog, J. Y. Mevellec, C. Godon, O. Chauvet. Diamond Relat. Mater. 14, 867 (2005).Search in Google Scholar

80. doi:10.1016/S0008-6223(03)00078-2, W. Feng, X. D. Ba, Y. Q. Lian, J. Liang, X. G. Wang, K. Yoshino. Carbon 41, 1551 (2003).Search in Google Scholar

81. doi:10.1063/1.1786370, Y. Long, Z. Chen. Appl. Phys. Lett. 85, 1796 (2004).Search in Google Scholar

82. H. Nakamatsu, E. Itoh, K. Miyairi. Mol. Cryst. Liq. Cryst. 472, 485 (2007).Search in Google Scholar

83. doi:10.1021/ja043153l, E. Bekyarova, M. E. Itkis, N. Cabrea, B. Zhao, A. Yu, J. Gao, R. C. Haddon. J. Am. Chem. Soc. 127, 5990 (2005).Search in Google Scholar

84. doi:10.1002/pen.20002, P. C. Ramamurthy, W. R. Harrell, R. V. Gregory, B. Sadanadan, A. M. Rao. Polym. Eng. Sci. 44, 28 (2004).Search in Google Scholar

85. doi:10.1016/j.sse.2004.05.051, P. C. Ramamurthy, A. M. Malshe, W. R. Harrel, R. V. Gregory, K. McGuire, A. M. Rao. Solid-State Electron. 48, 2019 (2004).Search in Google Scholar

86. doi:10.1016/j.progsolidstchem.2005.11.021, C. Nastase, F. Nastase, A. Vaseashta, I. Stamatin. Prog. Solid State Chem. 34, 181 (2006).Search in Google Scholar

87. M. V. Kulkarni, A. K. Viswanath. J. Macromol. Sci., Pure Appl. Chem. 41, 1173 (2004).Search in Google Scholar

88. doi:10.1016/j.synthmet.2005.07.154, V. Mottaghitalab, G. M. Spinks, G. G. Wallace. Synth. Met. 152, 77 (2005).Search in Google Scholar

89. doi:10.1016/j.synthmet.2006.03.016, V. Mottaghitalab, B. Xi, G. M. Spinks, G. G. Wallace. Synth. Met. 156, 796 (2006).Search in Google Scholar

90. doi:10.1149/1.1764570, P. C. Ramamurthy, W. R. Harrell, R. V. Gregory, B. Sadanadan, A. M. Rao. J. Electrochem. Soc. 151, G502 (2004).Search in Google Scholar

91. doi:10.1016/j.synthmet.2005.07.261, S. J. Park, S. Y. Park, M. S. Cho, H. J. Choi, M. S. John. Synth. Met. 152, 337 (2005).Search in Google Scholar

92. doi:10.1016/j.diamond.2004.12.052, H. J. Choi, S. J. Park, S. T. Kim, M. S. Jhon. Diamond Relat. Mater. 14, 766 (2005).Search in Google Scholar

93. doi:10.1016/j.cap.2006.09.007, C. S. Choi, S. J. Park, H. J. Choi. Curr. Appl. Phys. 7, 352 (2007).Search in Google Scholar

94. doi:10.1016/j.jmmm.2007.05.036, E. N. Konyushenko, N. E. Kazantseva, J. Stejskal, M. Trchova, J. Kovarova, I. Sapurina, M. M. Tomishko, O. V. Demicheva, J. Prokes. J. Magn. Magn. Mater. 320, 231 (2008).Search in Google Scholar

95. R. Saraswathi. 17th International Symposium on Fine Chemistry and Functional Polymers (FCFP-XVII) & IUPAC 3rd International Symposium on Novel Materials and Synthesis (NMS-III), 17-21 October 2007, Shanghai, China, J. Fudan University (Natural Science), 46, 691 (2007).Search in Google Scholar

96. doi:10.1016/j.jpowsour.2006.08.021, C. Y. Wang, V. Mottaghitalab, C. O. Too, G. M. Spinks, G. G. Wallace. J. Power Sources 163, 1105 (2007).Search in Google Scholar

97. doi:10.1149/1.2404901, S. R. Sivakkumar, D. W. Kim. J. Electrochem. Soc. 154, A134 (2007).Search in Google Scholar

98. doi:10.1149/1.2750443, S. R. Sivakkumar, D. R. MacFarlane, M. Forsyth, D. W. Kim. J. Electrochem. Soc. 154, A834 (2007).Search in Google Scholar

99. doi:10.1021/cr941181o, P. Novak, K. Muller, K. S. V. Santhanam, O. Haas. Chem. Rev. 97, 283 (1997).Search in Google Scholar

100. B. E. Conway. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, pp. 299-334, Kluwer Academic/Plenum, New York (1999).10.1007/978-1-4757-3058-6_12Search in Google Scholar

101. E. Frackowiak. In Dekker Encyclopaedia of Nanoscience and Nanotechnology, J. A. Schwarz, C. I. Contescu, K. Putyera (Eds.), C, 537-546, Taylor & Francis (2004).Search in Google Scholar

102. M. Hughes. In Dekker Encyclopaedia of Nanoscience and Nanotechnology, J. A. Schwarz, C. I. Contescu, K. Putyera (Eds.), C, 447-459, Taylor & Francis (2004).Search in Google Scholar

103. V. V. N. Obreja. Physica E: Low-Dimen. Syst. Nanostruct. 9, 44 (2007).Search in Google Scholar

104. A. K. Shukla, S. Sampath, K. Vijaymohanan. Curr. Sci. 79, 1656 (2002).Search in Google Scholar

105. doi:10.1016/S0378-7753(02)00419-6, K. R. Prasad, N. Munichandraiah. J. Power Sources 112, 443 (2002).Search in Google Scholar

106. doi:10.1016/S0008-6223(02)00045-3, E. Frackowiak, F. Beguin. Carbon 40, 1775 (2002).Search in Google Scholar

107. doi:10.1016/j.electacta.2003.08.007, Y. K. Zhou, B. He, W. Zhou, J. Huang, X. Li, B. Wu, H. Li. Electrochim. Acta 49, 257 (2004).Search in Google Scholar

108. doi:10.1149/1.1758812, Y. K. Zhou, B. L. He, W. J. Zhou, H. L. Li. J. Electrochem. Soc. 151, A1052 (2004).Search in Google Scholar

109. doi:10.1016/j.carbon.2005.05.039, J. Jang, J. Bae, M. Choi, S. H. Yoon. Carbon 43, 2730 (2005).Search in Google Scholar

110. doi:10.1016/j.electacta.2004.10.078, V. Khomenko, E. Frackowiak, F. Beguin. Electrochim. Acta 50, 2499 (2005).Search in Google Scholar

111. doi:10.1007/s10853-005-1623-6, M. Deng, B. Yang, Y. Hu. J. Mater. Sci. 40, 5021 (2005).Search in Google Scholar

112. doi:10.1016/j.jpowsour.2007.05.103, S. R. Sivakkumar, W. J. Kim, J. A. Choi, D. R. MacFarlane, M. Forsyth, D. W. Kim. J. Power Sources 171, 1062 (2007).Search in Google Scholar

113. doi:10.1016/j.electacta.2007.07.004, C. Peng, J. Jin, G. Z. Chen. Electrochim. Acta 53, 525 (2007).Search in Google Scholar

114. M. Wu, L. Zhang, D. Wang, J. Gao, S. Zhang. Nanotechnology 19, 1 (2007).10.1088/0957-4484/19/32/325608Search in Google Scholar PubMed

115. doi:10.1002/elan.200603567, K. M. Manesh, P. Santhosh, A. I. Gopalan. K. P. Lee. Electroanalysis 18, 1564 (2006).Search in Google Scholar

116. doi:10.1016/j.jcat.2005.12.014, P. Santhosh, A. I. Gopalan, K. P. Lee. J. Catal. 238, 177 (2006).Search in Google Scholar

117. doi:10.1007/s10853-006-1043-2, J. Shi, Z. Wang, H. L. Li. J. Mater. Sci. 42, 539 (2007).Search in Google Scholar

118. P. Gajendran, R. Saraswathi. Proc. 2nd International Conf. on Emerging Adaptive Systems and Technologies, p. 183, Kumaracoil, Tamilnadu, India, 25-27 October (2007).Search in Google Scholar

119. doi:10.1007/s10008-004-0624-8, J. Shi, D. J. Guo, Z. Wang, H. L. Li. J. Solid State Electrochem. 9, 634 (2005).Search in Google Scholar

120. doi:10.1016/j.apsusc.2007.10.033, Z. Z. Zhu, Z. Wang, H. L. Lin. Appl. Surf. Sci. 254, 2934 (2008).Search in Google Scholar

121. doi:10.1016/j.apsusc.2007.03.005, Z. Wang, Z. Z. Zhu, J. Shi, H. L. Li. Appl. Surf. Sci. 253, 8811 (2007).Search in Google Scholar

122. doi:10.1016/j.jpowsour.2007.03.048, Y. Qiao, C. M. Li, S. J. Bao, Q. L. Bao. J. Power Sources 170, 79 (2007).Search in Google Scholar

123. doi:10.3390/s7030267, H. Bai, G. Shi. Sensors 7, 267 (2007).Search in Google Scholar

124. D. D. Borole, U. R. Kaapadi, P. P. Mahulikar, D. G. Hundiwale. J. Mater. Sci. 9, 1 (2006).Search in Google Scholar

125. doi:10.1016/S0956-5663(01)00312-8, M. Gerard, A. Chaubey, B. D. Malhotra. Biosens. Bioelectron. 17, 345 (2002).Search in Google Scholar

126. doi:10.1016/j.aca.2006.04.055, B. D. Malhotra, A. Chaubey, S. P. Singh. Anal. Chim. Acta 578, 59 (2006).Search in Google Scholar

127. doi:10.1002/elan.200290000, Q. Zhao, Z. Gan, Q. Zhuang. Electroanalysis 14, 1609 (2002).Search in Google Scholar

128. doi:10.1002/elan.200390094, S. Sherigara, W. Kutner, F. D. Souza. Electroanalysis 15, 753 (2003).Search in Google Scholar

129. doi:10.1039/b314481j, Y. Lin. S. Taylor, H. Li, A. S. Fernando, L. Qu, W. Wang, L. Gu, B. Zhou, Y. P. Sun. J. Mater. Chem. 14, 527 (2004).Search in Google Scholar

130. doi:10.2116/analsci.21.1383, K. Gong, Y. Yan, M. Zhang, L. Su, S. Xiong, L. Mao. Anal. Sci. 21, 1383 (2005).Search in Google Scholar

131. doi:10.1016/j.electacta.2004.08.052, J. J. Gooding. Electrochim. Acta 50, 3049 (2005).Search in Google Scholar

132. doi:10.1007/s00604-005-0445-1, P. He, Y. Xu, Y. Fang. Microchim. Acta 152, 175 (2006).Search in Google Scholar

133. doi:10.1007/s00604-005-0449-x, G. G. Wildgoose, C. E. Banks, H. C. Leventis, R. G. Compton. Microchim. Acta 152, 187 (2006).Search in Google Scholar

134. doi:10.1007/s00604-005-0439-z, A. Merkoci. Microchim. Acta 152, 157 (2006).Search in Google Scholar

135. doi:10.1016/j.talanta.2007.10.013, G. A. Rivas, M. D. Rubianes, M. C. Rodriguez, N. F. Ferreyra, G. L. Luque, M. L. Pedano, S. A. Miscoria, C. Parrado. Talanta 74, 291 (2007).Search in Google Scholar

136. doi:10.1002/adma.200700665, S. N. Kim, J. F. Rusling, F. Papadimitrakopoulos. Adv. Mater. 19, 3214 (2007).Search in Google Scholar

137. doi:10.1016/j.jelechem.2005.09.009, M. Kaempgen, S. Roth. J. Electroanal. Chem. 586, 72 (2006).Search in Google Scholar

138. doi:10.1002/pssb.200669220, N. F. Anglada, M. Kaempgen, S. Roth. Phys. Status Solidi B 243, 3519 (2006).Search in Google Scholar

139. doi:10.1016/j.cplett.2003.11.091, L. Valentini, V. Bavastrello, E. Stura, I. Armentano, C. Nicolini, J. M. Kenny. Chem. Phys. Lett. 383, 617 (2004).Search in Google Scholar

140. doi:10.1016/j.polymer.2005.05.025, L. Valentini, J. M. Kenny. Polymer 46, 6715 (2005).Search in Google Scholar

141. Y. Li, H. Wang, X. Cao, M. Yuan, M. Yang. Nanotechnology 19, 1 (2008).10.1088/0957-4484/19/01/015503Search in Google Scholar PubMed

142. doi:10.1166/jnn.2006.675, Y. Wanna, N. Srisukhumbowornchai, A. Tuantranont, A. Wisitsoraat, N. Thavarungkul, P. Singjai. J. Nanosci. Nanotechnol. 6, 3893 (2006).Search in Google Scholar

143. doi:10.1016/j.snb.2007.01.044, P. Santhosh, K. M. Manesh, A. I. Gopalan, K. P. Lee. Sens. Actuators, B 125, 92 (2007).Search in Google Scholar

144. doi:10.1016/j.aca.2004.10.045, M. Guo, J. Chen, J. Li, B. Tao, S. Yao. Anal. Chim. Acta 532, 71 (2005).Search in Google Scholar

145. doi:10.1039/b500417a, Y. Lin, X. Cui. Chem. Commun. 2226 (2005).Search in Google Scholar

146. doi:10.1002/elan.200503409, X. Gao, W. Wei, L. Yang, M. Guo. Electroanalysis 18, 485 (2006).Search in Google Scholar

147. doi:10.1016/j.electacta.2006.10.001, M. Li, L. Jing. Electrochim. Acta 52, 3250 (2007).Search in Google Scholar

148. doi:10.1002/elan.200503403, E. Granot, B. Basnar, Z. Cheglakov, E. Katz, I. Willner. Electroanalysis 18, 26 (2006).Search in Google Scholar

149. doi:10.1021/la0501233, J. Liu, S. Tian, W. Knoll. Langmuir 21, 5596 (2005).Search in Google Scholar

150. doi:10.1016/j.snb.2006.03.016, J. Zeng, X. Gao, W. Wei, X. Zhai, J. Yin, L. Wu, X. Liu, K. Liu, S. Gong. Sens. Actuators, B 120, 595 (2007).Search in Google Scholar

151. doi:10.1021/ac062068o, S. R. Ali, Y. Ma, R. R. Parajuli, Y. Balogun, W. Y. C. Lai, H. He. Anal. Chem. 79, 2583 (2007).Search in Google Scholar

152. doi:10.1021/jp073705x, S. R. Ali, R. R. Parajuli, Y. Ma, Y. Balogun, H. He. J. Phys. Chem. B 111, 12275 (2007).Search in Google Scholar

153. doi:10.1007/s00216-006-0845-z, T. Yin, W. Wei, J. Zeng. Anal. Bioanal. Chem. 386, 2087 (2006).Search in Google Scholar

154. doi:10.1016/j.jelechem.2006.09.021, Z. Wang, J. Yean, M. Li, D. Han, Y. Zhang, Y. Shen, L. Niu, A. Tvaska. J. Electroanal. Chem. 599, 121 (2007).Search in Google Scholar

155. doi:10.2116/analsci.21.367, D. Pan, J. Chen, S. Yao, W. Tao, L. Nie. Anal. Sci. 21, 367 (2005).Search in Google Scholar

156. doi:10.1016/j.aca.2006.05.075, P. Santhosh, K. M. Manesh, A. I. Gopalan, K. P. Lee. Anal. Chim. Acta 575, 32 (2006).Search in Google Scholar

157. doi:10.1016/j.talanta.2006.11.001, Y. Zou, L. Sun, F. Xu. Talanta 72, 437 (2007).Search in Google Scholar

158. doi:10.1016/j.bios.2006.10.035, Y. Zou, L. Sun, F. Xu. Biosens. Bioelectron. 22, 2669 (2007).Search in Google Scholar

159. doi:10.1016/0379-6779(94)03226-V, K. Kaneto, M. Kaneko, Y. Min. A. G. MacDiarmid. Synth. Met. 71, 2211 (1995).Search in Google Scholar

160. doi:10.1016/j.synthmet.2005.03.009, E. Smela, W. Lu, B. R. Mattes. Synth. Met. 151, 25 (2005).Search in Google Scholar

161. doi:10.1002/1616-3028(20020618)12:6/7<437::AID-ADFM437>3.0.CO;2-I, G. M. Spinks, L. Liu, G. G. Wallace, D. Zhou. Adv. Funct. Mater. 12, 437 (2002).Search in Google Scholar

162. doi:10.1295/polymj.36.151, S. Hara, T. Zama, W. Takashima, K. Kaneto. Polym. J. 36, 151 (2004).Search in Google Scholar

163. doi:10.1126/science.284.5418.1340, R. H. Baughman, C. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks. G. G. Wallace, A. Mazzoldi, D. D. Rossa, A. G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz. Science 284, 1340 (1999).Search in Google Scholar

164. doi:10.1021/nl052435w, Y. Yun, V. Shanov, Y. Tu, M. Schulz, S. Yarmolenko, S. Neralla, J. Sankar S. Subramaniam. Nano Lett. 6, 689 (2006).Search in Google Scholar

165. doi:10.1021/nl025800h, B. J. Landi, R. P. Raffaelle, M. J. Heben, J. L. Alleman, W. VanDerveer, T. Gennett. Nano Lett. 2, 1329 (2002).Search in Google Scholar

166. X. Yu, R. Rajamani, K. A. Stelson, T. Cui. Sen. Actuators, A 132, 626 (2006).10.1016/j.sna.2006.02.045Search in Google Scholar

167. doi:10.1088/0964-1726/12/4/313, M. Tahhan, V. T. Truong, G. M. Spinks, G. G. Wallace. Smart Mater. Struct. 12, 626 (2003).Search in Google Scholar

168. doi:10.1016/j.synthmet.2005.03.006, G. M. Spinks, B. Xi, V. T. Truong, G. G. Wallace. Synth. Met. 151, 85 (2005).Search in Google Scholar

169. doi:10.1002/adma.200502366, G. M. Spinks, V. Mottaghitalab, M. B. Samani, P. G. Whitten, G. G. Wallace. Adv. Mater. 18, 637 (2006).Search in Google Scholar

170. doi:10.1016/j.snb.2006.04.103, G. M. Spinks, S. R. Shin, G. G. Wallace, P. G. Whitten, I. Y. Kim, S. I. Kim, S. J. Kim. Sens. Actuators, B 21, 616 (2007).Search in Google Scholar

171. S. Yun, J. Kim, Z. Ounaies. Smart Mater. Struct. 15, N61 (2006).10.1088/0964-1726/15/3/N02Search in Google Scholar

172. doi:10.1016/j.synthmet.2007.05.016, S. Yun, J. Kim. Synth. Met. 157, 523 (2007).Search in Google Scholar

173. doi:10.1088/0022-3727/39/12/016, S. Yun, J. Kim. J. Phys. D: Appl. Phys. 39, 2580 (2006).Search in Google Scholar

174. doi:10.1021/nl048055c, C. Klinke, J. Chen, A. Afzali, P. Avouris. Nano Lett. 5, 555 (2005).Search in Google Scholar

175. doi:10.1016/S0379-6779(02)01200-6, P. C. Ramamurthy, W. R. Harell, R. V. Gregory, B. Sadanadan, A. M. Rao. Synth. Met. 137, 1497 (2003).Search in Google Scholar

176. doi:10.1063/1.1553991, G. B. Blanchet, C. R. Fincher, F. Gao. Appl. Phys. Lett. 82, 1290 (2003).Search in Google Scholar

177. doi:10.1002/adma.200304841, M. Lefenfeld, G. Blanchet, J. A. Rogers. Adv. Mater. 15, 1188 (2003).Search in Google Scholar

178. doi:10.1039/b712940h, W. R. Small, F. Masdarolomoor, G. G. Wallace, M. Panhuis. J. Mater. Chem. 17, 4359 (2007).Search in Google Scholar

179. doi:10.1016/j.synthmet.2007.04.010, M. Panhuis, J. Wu, S. A. Ashraf, G. G. Wallace. Synth. Met. 157, 358 (2007).Search in Google Scholar

180. L. Hu, G. Gruner, D. Li, R. B. Kaner, J. Cech. J. Appl. Phys. 101, 1 (2007).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2008-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1351/pac200880112377/html
Scroll to top button