Skip to content
Publicly Available Published by De Gruyter May 5, 2009

Exploration and engineering of biosynthetic pathways in the marine actinomycete Salinispora tropica

  • Markus Nett and Bradley S. Moore

Abstract

In recent years, members of the marine actinomycete genus Salinispora have proven to be a precious source of structurally diverse secondary metabolites, including the potent anticancer agent salinosporamide A and the enediyne-derived sporolides. The tremendous potential of these marine-dwelling microbes for natural products biosynthesis, however, was not fully realized until sequencing of the Salinispora tropica genome revealed the presence of numerous orphan biosynthetic loci besides a plethora of rare metabolic pathways. This contribution summarizes the biochemical exploration of this prolific organism, highlighting studies in which genome-based information was exploited for the discovery of new enzymatic processes and the engineering of unnatural natural products. Inactivation of key genes within the salinosporamide pathway has expanded its inherent metabolic plasticity and enabled access to various salinosporamide derivatives by mutasynthesis. New insights into the biosynthesis of the sporolides allowed us to increase production titers of these structurally complex molecules, thereby providing the means to search for the DNA cleaving presporolide enediyne.


Conference

International Conference on Biodiversity and Natural Products (ICOB-6 & ISCNP-26), International Conference on Biodiversity, International Symposium on the Chemistry of Natural Products, ICOB, ISCNP, Biodiversity, Natural Products, Charlottetown, Prince Edward Island, Canada, 2008-07-13–2008-07-18


References

1. P. R. Jensen, R. Dwight, W. Fenical. Appl. Environ. Microbiol. 57, 1102 (1991).10.1128/aem.57.4.1102-1108.1991Search in Google Scholar

2. doi:10.1128/AEM.68.10.5005-5011.2002, T. J. Mincer, P. R. Jensen, C. A. Kauffman, W. Fenical. Appl. Environ. Microbiol. 68, 5005 (2002).Search in Google Scholar

3. doi:10.1099/ijs.0.63625-0, L. A. Maldonado, W. Fenical, P. R. Jensen, C. A. Kauffman, T. J. Mincer, A. C. Ward, A. T. Bull, M. Goodfellow. Int. J. System. Evol. Microbiol. 55, 1759 (2005).Search in Google Scholar

4. doi:10.1111/j.1462-2920.2006.01093.x, P. R. Jensen, C. Mafnas. Environ. Microbiol. 8, 1881 (2006).Search in Google Scholar

5. doi:10.1038/nchembio841, W. Fenical, P. R. Jensen. Nat. Chem. Biol. 2, 666 (2006).Search in Google Scholar

6. doi:10.1016/j.ccr.2005.10.013, D. Chauhan, L. Catley, G. L. Li, K. Podar, T. Hideshima, M. Velankar, C. Mitsiades, N. Mitsiades, H. Yasui, A. Letai, H. Ovaa, C. Berkers, B. Nicholson, T. H. Chao, S. T. C. Neuteboom, P. Richardson, M. A. Palladino, K. C. Anderson. Cancer Cell 8, 407 (2005).Search in Google Scholar

7. doi:10.1128/AEM.01891-06, P. R. Jensen, P. G. Williams, D.-C. Oh, L. Zeigler, W. Fenical. Appl. Environ. Microbiol. 73, 1146 (2007).Search in Google Scholar

8. doi:10.1073/pnas.0700962104, D. W. Udwary, L. Zeigler, R. N. Asolkar, V. Singan, A. Lapidus, W. Fenical, P. R. Jensen, B. S. Moore. Proc. Natl. Acad. Sci. USA 104, 10376 (2007).Search in Google Scholar

9. doi:10.1002/ange.200390083, R. H. Feling, G. O. Buchanan, T. J. Mincer, C. A. Kauffman, P. R. Jensen, W. Fenical. Angew. Chem., Int. Ed. 115, 369 (2003).Search in Google Scholar

10. doi:10.1351/pac199971091673, S. Omura, M. Hayashi, H. Tomoda. Pure Appl. Chem. 71, 1673 (1999).Search in Google Scholar

11. doi:10.1016/j.cbpa.2008.06.033, B. S. Moore, A. E. Eustaquio, R. P. McGlinchey. Curr. Opin. Chem. Biol. 12, 434 (2008).Search in Google Scholar

12. doi:10.1021/ja993588m, M. Groll, K. B. Kim, N. Kairies, R. Huber, C. M. Crews. J. Am. Chem. Soc. 122, 1237 (2000).Search in Google Scholar

13. doi:10.1021/ja058320b, M. Groll, R. Huber, B. C. M. Potts. J. Am. Chem. Soc. 128, 5136 (2006).Search in Google Scholar

14. doi:10.1021/jo050511+, P. G. Williams, G. O. Buchanan, R. H. Feling, C. A. Kauffman, P. R. Jensen, W. Fenical. J. Org. Chem. 70, 6196 (2005).Search in Google Scholar

15. doi:10.1021/np0603471, K. A. Reed, R. R. Manam, S. S. Mitchell, J. Xu, S. Teisan, T.-H. Chao, G. Deyanat-Yadzi, S. T. C. Neuteboom, K. S. Lam, B. C. M. Potts. J. Nat. Prod. 70, 269 (2007).Search in Google Scholar

16. doi:10.1021/ol063102o, L. L. Beer, B. S. Moore. Org. Lett. 9, 845 (2007).Search in Google Scholar

17. doi:10.1021/cr050313i, F. H. Vaillancourt, E. Yeh, D. A. Vosburg, S. Garneau-Tsodikova, C. T. Walsh. Chem. Rev. 106, 3364 (2006).Search in Google Scholar

18. doi:10.1038/nature02280, C. Dong, F. Huang, H. Deng, C. Schaffrath, J. B. Spencer, D. O'Hagan, J. H. Naismith. Nature 427, 561 (2004).Search in Google Scholar

19. doi:10.1038/nchembio.2007.56, A. S. Eustaquio, F. Pojer, J. P. Noel, B. S. Moore. Nat. Chem. Biol. 4, 69 (2008).Search in Google Scholar

20. doi:10.1038/ja.2007.2, K. S. Lam, G. Tsueng, K. A. McArthur, S. S. Mitchell, B. C. M. Potts, J. Xu. J. Antibiot. 60, 13 (2007).Search in Google Scholar

21. The substrate discrimination of subsequent pathway enzymes prevents an in vivo production of iodosalinosporamide.Search in Google Scholar

22. doi:10.1021/jm048995+, V. R. Macherla, S. S. Mitchell, R. R. Manam, K. A. Reed, T.-H. Chao, B. Nicholson, G. Deyanat-Yazdi, B. Mai, P. R. Jensen, W. F. Fenical, S. T. C. Neuteboom, K. S. Lam, M. A. Palladino, B. C. M. Potts. J. Med. Chem. 48, 3684 (2005).Search in Google Scholar

23. doi:10.1002/anie.200800177, A. S. Eustaquio, B. S. Moore. Angew. Chem., Int. Ed. 47, 3936 (2008).Search in Google Scholar

24. E. J. Corey, W. Z. Li. Chem. Pharm. Bull. 47, 1 (1999).10.1248/cpb.47.1Search in Google Scholar

25. doi:10.1021/ja052376o, L. R. Reddy, J.-F. Fournier, B. V. S. Reddy, E. J. Corey. J. Am. Chem. Soc. 127, 8974 (2005).Search in Google Scholar

26. doi:10.1021/ja8029398, R. P. McGlinchey, M. Nett, A. S. Eustaquio, R. N. Asolkar, W. Fenical, B. S. Moore. J. Am. Chem. Soc. 130, 7822 (2008).Search in Google Scholar

27. doi:10.1021/ol050901i, G. O. Buchanan, P. G. Williams, R. H. Feling, C. A. Kauffman, P. R. Jensen, W. Fenical. Org. Lett. 7, 2731 (2005).Search in Google Scholar

28. doi:10.1021/ol052686b, D.-C. Oh, P. G. Williams, C. A. Kauffman, P. R. Jensen, W. Fenical. Org. Lett. 8, 1021 (2006).Search in Google Scholar

29. doi:10.1021/ja070023e, C. L. Perrin, B. L. Rodgers, J. M. O'Connor. J. Am. Chem. Soc. 129, 4795 (2007).Search in Google Scholar

30. doi:10.1021/bi701438r, J. Brownlee, P. He, G. R. Moran, D. H. T. Harrison. Biochemistry 47, 2002 (2008).Search in Google Scholar

31. doi:10.1021/ja710488m, R. P. McGlinchey, M. Nett, B. S. Moore. J. Am. Chem. Soc. 130, 2406 (2008).Search in Google Scholar

32. doi:10.1016/S1074-5521(00)00043-0, B. K. Hubbard, M. G. Thomas, C. T. Walsh. Chem. Biol. 7, 931 (2000).Search in Google Scholar

33. doi:10.1007/s00253-007-0900-5, H. Gross. Appl. Microbiol. Biotechnol. 75, 267 (2007).Search in Google Scholar

34. doi:10.1021/jm700948z, G. L. Challis. J. Med. Chem. 51, 2618 (2008).Search in Google Scholar

35. doi:10.1021/ja711188x, A. W. Schultz, D.-C. Oh, J. R. Carney, R. T. Williamson, D. W. Udwary, P. R. Jensen, S. J. Gould, W. Fenical, B. S. Moore. J. Am. Chem. Soc. 130, 4507 (2008).Search in Google Scholar

Published Online: 2009-05-05
Published in Print: 2009-05-05

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.5.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-08-08-08/html
Scroll to top button