Skip to content
Publicly Available Published by De Gruyter October 29, 2012

Thermal behavior, structure, and dynamics of low-temperature water confined in mesoporous organosilica by differential scanning calorimetry, X-ray diffraction, and quasi-elastic neutron scattering

  • Mai Aso , Kanae Ito , Hiroaki Sugino , Koji Yoshida , Takeshi Yamada , Osamu Yamamuro , Shinji Inagaki and Toshio Yamaguchi

Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and quasi-elastic neutron scattering (QENS) measurements have been made at 200~330 K for capillary-condensed water confined in periodic mesoporous organosilica (PMO) materials with the phenyl groups embedded in silica matrix (Ph-PMO; pore diameter 30 Å). The DSC data showed that the capillary-condensed water in Ph-PMO freezes at 228 K. X-ray radial distribution functions (RDFs) showed that the tetrahedral-like hydrogen-bonded structure of water is distorted in Ph-PMO pores, compared with bulk water; however, with lowering temperature the tetrahedral moiety of water is gradually recovered in the pores. Below the freezing point, cubic ice Ic was formed in the Ph-PMO pores. The QENS data showed that the translational diffusion constant and the residence time and the rotational relaxation time of water molecule in Ph-PMO are comparable with those in bulk. The corresponding activation energies suggested that the more hydrophobic the nature of the wall is, the smaller the activation energy of diffusion and rotation of a water molecule; this implies that water molecules confined in the hydrophobic pores are present in the core of the pores, whereas those in the hydrophilic pores strongly interact with the silanol groups.


Conference

International Conference on Solution Chemistry (ICSC-32), International Conference on Solution Chemistry, ICSC, Solution Chemistry, 32nd, La Grande Motte, France, 2011-08-28–2011-09-02


References

1 10.1021/jp9631238, T. Takamuku, M. Yamaguchi, H. Wakita, Y. Masuda, T. Yamaguchi. J. Phys. Chem. B101, 5730 (1997).Search in Google Scholar

2 10.1103/PhysRevLett.85.3644, M.-C. Bellissent-Funel, S. Longeville, J.-M. Zanotti, S.-H. Chen. Phys. Rev. Lett.85, 3644 (2000).Search in Google Scholar PubMed

3 10.1021/ja00053a020, J. S. Beck, J. C. Vartulli, W. J. Roth, M. E. Leonovicz, C. T. Kresger, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker. J. Am. Chem. Soc.114, 10834 (1992).Search in Google Scholar

4 10.1021/jp984136j, S. Takahara, M. Nakano, S. Kittaka, Y. Kuroda, T. Mori, H. Hamano, T. Yamaguchi. J. Phys. Chem. B103, 5814 (1999).Search in Google Scholar

5 10.1021/jp994326+, P. Smirnov, T. Yamaguchi, S. Kittaka, S. Takahara, Y. Kuroda. J. Phys. Chem. B104, 5498 (2000).Search in Google Scholar

6 10.1021/jp046036l, S. Takahara, N. Sumiyama, S. Kittaka, T. Yamaguchi, M.-C. Bellissent-Funel. J. Phys. Chem. B109, 1231 (2005).Search in Google Scholar PubMed

7 10.1063/1.2961029, K. Yoshida, T. Yamaguchi, S. Kittaka, M.-C. Bellissent-Funel, P. Fouquet. J. Chem. Phys.129, 054702 (2008).Search in Google Scholar PubMed

8 10.1016/j.molliq.2006.08.003, T. Yamaguchi, H. Hashi, S. Kittaka. J. Mol. Liq.129, 57 (2006).Search in Google Scholar

9 10.1143/JPSJ.71.2863, Y. Maniwa, H. Kataura, M. Abe, S. Suzuki, Y. Achiba, H. Kira, K. Matsuda. J. Phys. Soc. Jpn.71, 2863 (2002).Search in Google Scholar

10 10.1016/j.susc.2008.10.035, E. Levy, A. I. Kolesnikov, J. Li, Y. Mastai. Surf. Sci.603, 71 (2009).Search in Google Scholar

11 10.1038/416304a, S. Inagaki, S. Guan, T. Ohsuna, O. Terasaki. Nature416, 304 (2002).Search in Google Scholar

12 10.1021/jp2029467, T. Yamada, R. Yonamine, T. Yamada, H. Kitagawa, M. Tyagi, M. Nagao, O. Yamamuro. J. Phys. Chem. B115, 13563 (2011).Search in Google Scholar

13 10.1021/ja01864a025, S. Brunauer, L. S. Deming, W. E. Deming, E. Teller. J. Am. Chem. Soc.62, 1723 (1940).Search in Google Scholar

14 10.1063/1.467948, K. Yamanaka, T. Yamaguchi, H. Wakita. J. Chem. Phys.101, 9830 (1994).Search in Google Scholar

15 10.1088/0034-4885/25/1/310, K. Furukawa. Rep. Prog. Phys.25, 395 (1973).Search in Google Scholar

16 10.1107/S0365110X56002655, J. Krogh-Moe. Acta Crystallogr.9, 951 (1956).Search in Google Scholar

17 10.1107/S0365110X57001085, N. Norman. Acta Crystallogr.10, 370 (1957).Search in Google Scholar

18 G. Johansson, M. Sandström. Chem. Scr.4, 195 (1973).Search in Google Scholar

19 10.1016/0921-4526(95)00308-V, T. Kajitani, K. Shibata, S. Ikeda, M. Kohgi, H. Yoshizawa, K. Nemoto, K. Suzuki. Physica B213–214, 872 (1995).Search in Google Scholar

20 J. C. Dore, M. Dunn, P. Chieux. J. Phys. Coll. C1 Suppl. 3, 48, 457 (1987).Search in Google Scholar

21 T. Yamaguchi. Doctoral Thesis, Tokyo Institute of Technology (1978).Search in Google Scholar

22 10.1103/PhysRevA.31.1913, J. Teixeira, M.-C. Bellissent-Funel, S. H. Chen, A. J. Dianoux. Phys. Rev. A31, 1913 (1985).Search in Google Scholar PubMed

Online erschienen: 2012-10-29
Erschienen im Druck: 2012-10-31

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-12-06-02/html
Scroll to top button