Skip to content
Publicly Available Published by De Gruyter July 24, 2009

Comparisons of structural iron reduction in smectites by bacteria and dithionite: II. A variable-temperature Mössbauer spectroscopic study of Garfield nontronite

  • Fabiana R. Ribeiro , José D. Fabris , Joel E. Kostka , Peter Komadel and Joseph W. Stucki

The reduction of structural Fe in smectite may be mediated either abiotically by reaction with chemical reducing agents or biotically by reaction with various bacterial species. The effects of abiotic reduction on clay surface chemistry are much better known than the effects of biotic reduction, and differences between them are still in need of investigation. The purpose of the present study was to compare the effects of dithionite (abiotic) and bacteria (biotic) reduction of structural Fe in nontronite on the clay structure as observed by variable-temperature Mössbauer spectroscopy. Biotic reduction was accomplished by incubating Na-saturated Garfield nontronite (sample API 33a) with Shewanella oneidensis strain MR-1 (FeII/total Fe achieved was ~17 %). Partial abiotic reduction (FeII/total Fe ~23 %) was achieved using pH-buffered sodium dithionite. The nontronite was also reduced abiotically to FeII/total Fe ~96 %. Parallel samples were reoxidized by bubbling O2 gas through the reduced suspensions at room temperature prior to Mössbauer analysis at 77 and 4 K. At 77 K, the reduction treatments all gave spectra composed of doublets for structural FeII and FeIII in the nontronite. The spectra for reoxidized samples were largely restored to that of the unaltered sample, except for the sample reduced to 96 %. At 4 K, the spectrum for the 96 % reduced sample was highly complex and clearly reflected magnetic order in the sample. When partially reduced, the spectrum also exhibited magnetic order, but the features were completely different depending on whether reduced biotically or abiotically. The biotically reduced sample appeared to contain distinctly separate domains of FeII and FeIII within the structure, whereas partial abiotic reduction produced a spectrum representative of FeII–FeIII pairs as the dominant domain type. The 4 K spectra of the partially reduced, fully reoxidized samples were virtually the same as at 77 K, whereas reoxidation of the 96 % reduced sample produced a spectrum consisting of a magnetically ordered sextet with a minor contribution from a FeII doublet, indicating significant structural alterations compared to the unaltered sample.

References

1. J. W. Stucki. In Handbook of Clay Science, F. Bergaya, B. K. G. Theng, G. Lagaly (Eds.), pp. 429482, Elsevier, Amsterdam (2006).Search in Google Scholar

2. doi:10.1016/j.crte.2006.04.010, J. W. Stucki, J. E. Kostka. C. R. Geosci. 338, 468 (2006).Search in Google Scholar

3. doi:10.1346/CCMN.2008.0560403, D. P. Jaisi, S. Ji, H. Dong, R. E. Blake, D. D. Eberl, J. W. Kim. Clays Clay Miner. 56, 416 (2008).Search in Google Scholar

4. doi:10.1346/CCMN.2008.0560204, D. P. Jaisi, H. Dong, J. P. Morton. Clays Clay Miner. 56, 175 (2008).Search in Google Scholar

5. doi:10.2138/am.2007.2331, G. Zhang, J. W. Kim, H. Dong, A. J. Sommer. Am. Mineral. 92, 1401 (2007).Search in Google Scholar

6. J. W. Stucki. In Iron in Soils and Clay Minerals, J. W. Stucki, B. A. Goodman, U. Schwertmann (Eds.), pp. 625675, D. Reidel, Dordrecht (1988).10.1007/978-94-009-4007-9Search in Google Scholar

7. doi:10.1128/AEM.02881-07, D. M. Akob, H. J. Mills, T. M. Gihring, L. Kerkhof, J. W. Stucki, K.-J. Chin, K. Kuesel, A. V. Palumbo, D. B. Watson, J. E. Kostka. Appl. Environ. Microbiol. 74, 3159 (2008).Search in Google Scholar

8. doi:10.1016/j.gca.2006.11.023, J. W. Stucki, K. Lee, B. A. Goodman, J. E. Kostka. Geochim. Cosmochim. Acta 71, 835 (2007).Search in Google Scholar

9. doi:10.1346/CCMN.2006.0540205, K. Lee, J. E. Kostka, J. W. Stucki. Clays Clay Miner. 54, 197 (2006).Search in Google Scholar

10. doi:10.1346/000986002320514181, C.-I. Fialips, D. Huo, L. Yan, J. Wu, J. W. Stucki. Clays Clay Miner. 50, 455 (2002).Search in Google Scholar

11. C.-I. Fialips, D. Huo, L. Yan, J. Wu, J. W. Stucki. Am. Mineral. 87, 630 (2002).Search in Google Scholar

12. doi:10.1346/CCMN.2003.0510504, H. Dong, J. E. Kostka, J. Kim. Clays Clay Miner. 51, 502 (2003).Search in Google Scholar

13. doi:10.1021/es020919d, H. Dong, R. K. Kukkadapu, J. K. Frederickson, J. M. Zachara, D. W. Kennedy, H. M. Kostandarithes. Environ. Sci. Technol. 37, 1268 (2003).Search in Google Scholar

14. doi:10.1346/CCMN.2003.0510403, J. W. Kim, Y. Furukawa, T. E. Daulton, D. Lavoie, S. W. Newell. Clays Clay Miner. 51, 382 (2003).Search in Google Scholar

15. J. M. D. Coey. In Mossbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 1, G. J. Long (Ed.), pp. 443509, Plenum Press, New York (1984).Search in Google Scholar

16. J. M. D. Coey. In Iron in Soils and Clay Minerals, J. W. Stucki, B. A. Goodman, U. Schwertmann (Eds.), pp. 397466, D. Reidel, Dordrecht (1988).Search in Google Scholar

17. doi:10.1346/CCMN.1976.0240201, B. A. Goodman, J. D. Russell, A. R. Fraser, F. W. D. Woodhams. Clays Clay Miner. 24, 53 (1976).Search in Google Scholar

18. B. A. Goodman. In Advanced Chemical Methods for Soil and Clay Mineral Research, J. W. Stucki, W. L. Banwart (Eds.), pp. 192, D. Reidel, Dordrecht (1980).Search in Google Scholar

19. E. Murad. In Iron in Soils and Clay Minerals, J. W. Stucki, B. A. Goodman, U. Schwertmann (Eds.), pp. 309350, D. Reidel, Dordrecht (1988).Search in Google Scholar

20. doi:10.1016/j.gca.2006.11.023, J. W. Stucki, K. Lee, B. A. Goodman, J. E. Kostka. Geochim. Cosmochim. Acta 71, 835 (2007).Search in Google Scholar

21. doi:10.1146/annurev.mi.48.100194.001523, K. H. Nealson, D. Saffarini. Annu. Rev. Microbiol. 48, 311 (1994).Search in Google Scholar

22. doi:10.1346/CCMN.1996.0440411, J. E. Kostka, J. W. Stucki, K. H. Nealson, J. Wu. Clays Clay Miner. 44, 522 (1996).Search in Google Scholar

23. doi:10.1346/CCMN.1984.0320306, J. W. Stucki, D. C. Golden, C. B. Roth. Clays Clay Miner. 32, 191 (1984).Search in Google Scholar

24. doi:10.1346/CCMN.1988.0360415, P. Komadel, J. W. Stucki. Clays Clay Miner. 36, 379 (1988).Search in Google Scholar

25. doi:10.1016/j.gca.2008.07.009, A. S. Anastacio, B. Harris, H.-I. Yoo, J. D. Fabris, J. W. Stucki. Geochim. Cosmochim. Acta 72, 5001 (2008).Search in Google Scholar

26. doi:10.1002/jpln.19871500503, E. Murad. Z. Pflanzen. Boden. 150, 279 (1987).Search in Google Scholar

27. doi:10.1346/CCMN.1979.0270108, J. D. Russell, B. A. Goodman, A. R. Fraser. Clays Clay Miner. 27, 63 (1979).Search in Google Scholar

28. J. W. Stucki, P. R. Lear. In Structures and Active Sites of Minerals, L. M. Coyne, D. Blake, S. McKeever (Eds.), pp. 330358, American Chemical Society, Washington, DC (1989).Search in Google Scholar

29. A. Manceau, V. A. Drits, B. Lanson, G. Chateigner, J. Wu, D. Huo, W. P. Gates, J. W. Stucki. Am. Mineral. 85, 153 (2000).Search in Google Scholar

30. doi:10.1346/CCMN.1993.0410312, W. P. Gates, H. T. Wilkinson, J. W. Stucki. Clays Clay Miner. 41, 360 (1993).Search in Google Scholar

31. doi:10.1346/CCMN.1995.0430112, P. Komadel, J. Madejova, J. W. Stucki. Clays Clay Miner. 43, 105 (1995).Search in Google Scholar

32. J. W. Stucki, C. B. Roth. Soil Sci. Soc. Am. J. 41, 808 (1977).Search in Google Scholar

33. doi:10.1346/CCMN.1985.0330609, P. R. Lear, J. W. Stucki. Clays Clay Miner. 33, 539 (1985).Search in Google Scholar

34. doi:10.1007/BF00309481, O. Ballet, J. M. D. Coey. Phys. Chem. Miner. 8, 218 (1982).Search in Google Scholar

35. doi:10.1346/CCMN.1987.0350507, P. R. Lear, J. W. Stucki. Clays Clay Miner. 35, 373 (1987).Search in Google Scholar

36. doi:10.1180/claymin.1990.025.1.02, P. R. Lear, J. W. Stucki. Clay Miner. 25, 313 (1990).Search in Google Scholar

37. doi:10.1346/CCMN.1990.0380212, P. Komadel, P. R. Lear, J. W. Stucki. Clays Clay Miner. 38, 203 (1990).Search in Google Scholar

38. doi:10.1007/s002690050254, R. Schuette, B. A. Goodman, J. W. Stucki. Phys. Chem. Miner. 27, 251 (2000).Search in Google Scholar

39. doi:10.1016/j.clay.2005.10.016, P. Komadel, J. Madejova, J. W. Stucki. Appl. Clay Sci. 34, 88 (2006).Search in Google Scholar

40. doi:10.1346/CCMN.1958.0070122, O. P. Mehra, M. L. Jackson. Clays Clay Miner. 7, 317 (1958).Search in Google Scholar


Conference

Conference on Solid State Chemistry, Conference on Solid State Chemistry , SSC, Solid State Chemistry , 8th, Bratislava, Slovakia, 2008-07-06–2008-07-11


Online erschienen: 2009-7-24
Erschienen im Druck: 2009-7-24

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.5.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-08-11-16/html
Scroll to top button